
DEDAUB.COM

Rysk
Smart Contract Security Assessment

December 9, 2022



DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform an audit of the new GMX Hedging Reactor of the
Rysk protocol.

The audit report covers commit hash 96bc9aa5ba596196567438ee7cd20b6b6704952c.
Two auditors worked on the codebase over 4 days. The scope of the audit is limited to a
single file, GmxHedgingReactor.sol. Hedging reactors are contracts used by the Liquidity
pool of Rysk to neutralize its total delta using derivatives. GMX hedging reactor opens
and closes short and long positions on GMX and checks that these positions are
supported by sufficient collateral.

One high severity and several medium and low severity issues were identified. All the
issues have been taken care of by the protocol team.

01



DEDAUB.COM

SETTING & CAVEATS

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than regular use of the protocol. Functional
correctness (i.e., issues in "regular use") is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e., full-detail) specifications of
what is the expected, correct behavior. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
specification.

Functional correctness relative to low-level calculations (including units, scaling,
quantities returned from external protocols) is generally most effectively done through
thorough testing rather than human auditing. The scope of the audit includes smart
contract code. Interactions with off-chain (front-end or back-end) code are not
examined other than to consider entry points for the contracts, i.e., calls into a smart
contract that may disrupt the contract’s functioning.

02



DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues that affect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL Can be profitably exploited by any knowledgeable third party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH Third-party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM Examples:
-User or system funds can be lost when third-party systemsmisbehave.
-DoS, under specific conditions.
-Part of the functionality becomes unusable due to programming error.

LOW Examples:
-Breaking important system invariants, but without apparent
consequences.
-Buggy functionality for trusted users where a workaround exists.
-Security issues which maymanifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

03



DEDAUB.COM

CRITICAL SEVERITY:

[No critical severity issues]

HIGH SEVERITY:

ID Description STATUS

H1 gmxPositionCallback is callable by anyone RESOLVED

The function GmxHedgingReactor::gmxPositionCallback, which updates the
internalDelta storage variable of the reactor as part of the two step process used by
GMX to execute positions, does not impose a limit on the msg.sender or the amount of
times that it may be called. An attacker could exploit this to completely mess up the
reactor’s internalDelta.

A requirement that the msg.sender is the gmxPositionRouter should be added, as
this would ensure that the gmxPositionCallback call comes after a successful call to
gmxPositionRouter::execute(Increase/Decrease)Position made by a GMX
keeper.

MEDIUM SEVERITY:

ID Description STATUS

M1 GmxPositionRouter has unlimited spending approval RESOLVED

In the GmxHedgingReactor constructor the gmxPositionRouter is approved to spend
an infinite amount of _collateralAsset. It appears that this is unneeded and
potentially dangerous, as the transfer of _collateralAsset is actually handled by the

04



DEDAUB.COM

GMX router, which gets approved for the exact amount needed in the function
_increasePosition, and not by the gmxPositionRouter.

M2 Inconsistent returns in _changePosition RESOLVED

The function GmxHedgingReactor::_changePosition is not consistent with the
values it returns. Even though it should always return the resulting difference in delta
exposure, it does not do so at the end of the if-branch of the if (_amount > 0) { … }
statement. If the control flow reaches that point, it jumps at the end of the function
leading to 0 being returned, i.e., as if there was no change in delta.

function _changePosition(int256 _amount) internal returns (int256) {
// ..
if (_amount > 0) {
// ..
// Dedaub: last statement is not a return
increaseOrderDeltaChange[positionKey] += deltaChange;

} else {
// ..
return deltaChange + closedPositionDeltaChange;

}
return 0;

}

Wewould suggest the following fixes:

function _changePosition(int256 _amount) internal returns (int256) {
// ..
if (_amount > 0) {
// ..
return deltaChange + closedPositionDeltaChange;

} else if (_amount < 0) {
// ..
return deltaChange + closedPositionDeltaChange;

}

05



DEDAUB.COM

return 0;
}

Currently the return value of _changePosition is further returned by the function
hedgeDelta and remains unused by its callers. However, this could change in future
versions of the protocol leading to bugs.

M3 GMX long and short positions could co-exist RESOLVED

GMX treats longs and shorts as completely separate positions, and charges borrowing
fees on both simultaneously, thus the reactor deals with positions in such a way that
ensures only a single position is open at a certain time. Nevertheless, due to the
two-step process that GMX uses to create positions and the fact that the reactor does
not take into account that a new position might be created while another one is waiting
to be finalized, there exists a scenario in which the reactor could end up with a long
and a short position at the same time. The scenario is the following:

1. Initially, there are no open positions
2. A long or short position is opened on GMX but is not executed immediately, i.e.,

GmxHedgingReactor::gmxPositionCallback is not called.
The LiquidityPool reckons that a counter position should be opened and calls
GmxHedgingReactor::hedgeDelta to do so.

3. When the two position orders are finally executed by GMX the reactor will have a
long and a short position open simultaneously.

The above scenario might not be likely to happen as it requires the LiquidityPool to
open two opposite positions in a very short period of time, i.e., before the first position
order is executed by a GMX keeper or a keeper of the protocol. Nevertheless, we believe
it would be better to also handle such a scenario, as it could mess up the reactor’s
accounting and the fix should be relatively easy.

06



DEDAUB.COM

M4
_getCollateralSizeDeltaUsd() in some cases
underestimates the extra collateral needed for an increase
of a position

ACKNOWLEDGED

Whenever the hedging reactor asks for an increase of a position,
_getCollateralSizeDeltaUsd() computes the extra collateral needed using
collateralToTransfer (collateral needed to be added or removed from the position
before its increase, to maintain the health to the desired value) and
extraPositionCollateral (the extra collateral needed for the increase of the
position).If isAboveMax==true and extraPositionCollateral >
collateralToTransfer, then the collateral which is actually added is just
totalCollateralToAdd= extraPositionCollateral - collateralToTransfer,
which could be not sufficient to collateralize the increased position.
Let us try to explain this with an example. Suppose that initially there is a long position
with position[0]=10_000, position[1]=5_000. Hedging reactor then asks for an
increase of its position by 11_000. extraPositionCollateralwill be 5_500. Suppose
than in the meantime this position had substantial profits i.e. positive unrealised
pnl=5_000. colateralToTransfer will be 5_000 and totalCollateralToAdd will be
5_500-5_000=500. Therefore the "leverage without pnl" of the new position will be
(10_000+11_000)/(5_000+500)=21_000/5_500=3.8. If this scenario is repeated, it
could lead to the liquidation of the position.
We suggest adding a check that the total size of the position does not exceed its total
collateral times maxLeverage, similar to the one used in the case of decreasing a
position.

07



DEDAUB.COM

LOW SEVERITY:

ID Description STATUS

L1 setPositionRouter does not remove the old PositionRouter RESOLVED

The function GmxHedgingReactor::setPositionRouter sets gmxPositionRouter
to the new GMX PositionRouter contract that is provided and calls approvePlugin on
the GMX Router contract to approve it. It does not revoke the approval to the old
PositionRouter contract, which from now on is irrelevant to the reactor, by calling the
function denyPlugin of the GMX Router contract.

L2 Potential underflow in CheckVaultHealth RESOLVED

If a position is in loss, the formula of the health variable is the following one:

// GmxHedgingReactor.sol::_getCollateralSizeDeltaUsd():344
health=(uint256((int256(position[1])-int256(position[8])).div(int256(posit
ion[0]))) * MAX_BIPS) / 1e18;

There is no check if the difference (int256(position[1])-int256(position[8])) in the
above formula is positive or not. It is possible, under specific economic conditions (and
if the GMX Liquidators are not fast enough), that the result of this difference is
negative. In such a case, the resulting value will be erroneous because of an underflow
error.

Even if this scenario is not expected to happen on a regular basis, we suggest adding a
check that this difference is indeed positive and if it is not extra measures should be
taken to avoid liquidations.

Note that the same issue appears in getPoolDenominatedValue, leading to the
execution reverting if an underflow occurs.

08



DEDAUB.COM

CENTRALIZATION ISSUES:

It is often desirable for DeFi protocols to assume no trust in a central authority, including
the protocol’s owner. Even if the owner is reputable, users are more likely to engage with
a protocol that guarantees no catastrophic failure even in the case the owner gets
hacked/compromised. We list issues of this kind below. (These issues should be
considered in the context of usage/deployment, as they are not uncommon. Several
high-profile, high-value protocols have significant centralization threats.)

09



DEDAUB.COM

OTHER/ ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 getPoolDenominatedValue() wastes gas INFO

The function GmxHedgingReactor::getPoolDenominatedValue wastes gas by
calling the function checkVaultHealth to retrieve just the currently open GMX
position instead of directly calling the _getPosition function.

A2 gmxPositionCallback() can bemademore gas efficient INFO

The function GmxHedgingReactor::gmxPositionCallback is responsible for
updating the internalDelta of the reactor with the values that are stored in the
mappings increaseOrderDeltaChange and decreaseOrderDeltaChange. These
mappings are essentially used as temporary storage before the change in delta is
applied to the internalDelta storage variable. Thus, after a successful update the
associated mapping element should be deleted to receive a gas refund for freeing up
space on the blockchain.

A3 sync() can bemademore gas efficient INFO

The function GmxHedgingReactor::sync is implemented to consider the scenario
where a long and a short position are open on GMX at the same time.

function sync() external returns (int256) {
_isKeeper();
uint256[] memory longPosition = _getPosition(true);
uint256[] memory shortPosition = _getPosition(false);
uint256 longDelta = longPosition[0] > 0 ?

010



DEDAUB.COM

(longPosition[0]).div(longPosition[2]) : 0;
uint256 shortDelta = shortPosition[0] > 0 ?
(shortPosition[0]).div(shortPosition[2]) : 0;

internalDelta = int256(longDelta) - int256(shortDelta);
return internalDelta;

}

However, the reactor in whole is implemented in a way that ensures that a long and a
short position cannot co-exist. Thus, the sync function can be implemented to take
into account only the current open position, making it more efficient in terms of gas
usage.

A4 Duplicate computations INFO

In GmxHedgingReactor::_getCollateralSizeDeltaUsd there is the following code:

// GmxHedgingReactor.sol::_getCollateralSizeDeltaUsd():670
if (
int256(position[1] / 1e12) - int256(adjustedCollateralToRemove) <
int256(((position[0] - _getPositionSizeDeltaUsd(_amount, position[0])) /

1e12) / (vault.maxLeverage() / 11000))
) {
adjustedCollateralToRemove =
position[1] / 1e12 -
((position[0]-_getPositionSizeDeltaUsd(_amount,position[0])) / 1e12) /
(vault.maxLeverage() / 11000);

if (adjustedCollateralToRemove == 0) {
return 0;

}
}

Observe that the quantity (position[0]-_getPositionSizeDeltaUsd(_amount,

position[0])) / 1e12) / (vault.maxLeverage() / 11000) is computed twice which
can be avoided by computing it once and storing its value to a local variable. The same

011



DEDAUB.COM

is true for the quantity _amount.mul(position[2] / 1e12).div(position[0] / 1e12)

that appears twice in the following computation:

// GmxHedgingReactor.sol::_getCollateralSizeDeltaUsd():651
collateralToRemove =

(1e18 -
(

(int256(position[0]/1e12)+int256((leverageFactor.mul(position[8]))/1e12))
.mul(1e18-int256(_amount.mul(position[2]/1e12).div(position[0]/1e12)))
.div(int256(leverageFactor.mul(position[1])/1e12))

)).mul(int256(position[1]/1e12)) -
int256(_amount.mul(position[2]/1e12).div(position[0]/1e12)

.mul(position[8]/1e12));

The above computation can be simplified even further by applying specific
mathematical properties:

uint256 d = _amount.mul(position[2]).div(position[0]);
collateralToRemove =

(int256(position[1] / 1e12) - (
((int256(position[0]) + int256(leverageFactor.mul(position[8]))) / 1e12)

.mul(1e18 - int256(d)).div(int256(leverageFactor))
)) - int256(d.mul(position[8] / 1e12));

A5 Duplicate calls INFO

The functions _increasePosition and _decreasePosition of the reactor
unnecessarily call gmxPositionRouter’s minExecutionFee function twice each instead
of caching the returned value in a local variable after the first call.

A6 Incorrect comment in _increasePosition INFO

012



DEDAUB.COM

The comment describing the parameter _collateralSize of the function
_increasePosition should read “amount of collateral to add” instead of "amount of
collateral to remove”.

A7 Unused errors INFO

The following errors are defined but not used:

// GmxHedgingReactor.sol::_getCollateralSizeDeltaUsd():88
error ValueFailure();
error IncorrectCollateral();
error IncorrectDeltaChange();
error InvalidTransactionNotEnoughMargin(int256 accountMarketValue, int256
totalRequiredMargin);

A8 Compiler bugs INFO

The code is compiled with Solidity 0.8.9, which, at the time of writing, has some known
bugs, which we do not believe to affect the correctness of the contracts.

013

https://github.com/ethereum/solidity/blob/b80f4baae20781b3bddeb729aa1ef1d0ca4a544c/docs/bugs_by_version.json#L1677
https://github.com/ethereum/solidity/blob/b80f4baae20781b3bddeb729aa1ef1d0ca4a544c/docs/bugs_by_version.json#L1677


DEDAUB.COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

014


