

Rysk Beyond
09/03/23

Trust
Security

Smart Contract Audit

Trust Security Rysk Beyond

Executive summary

Findings

Severity Total Open Fixed Acknowledged

High 2 - 1 1

Medium 9 - 8 1

Low 13 - 7 6

Centralization score

Centralized Decentralized

Signature

Category Options

Audited file count 20

Lines of Code 4511

Auditor Trust

Auditor 100proof

Time period 20/02-09/03

2, High

9,
Medium

13, Low

FINDINGS

Trust Security Rysk Beyond

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 4

Versioning 4

Contact 4

INTRODUCTION 5

Scope 5

Repository details 5

About Trust Security 5

Disclaimer 6

Methodology 6

QUALITATIVE ANALYSIS 7

FINDINGS 8

High severity findings 8

TRST-H-1 Unbounded slippage in OptionExchange::_buyOption() and _sellOption() makes users

vulnerable to sandwich attack 8

TRST-H-2 Decreasing positions in GMXHeadingReactor may lead to unhealthy positions 9

Medium severity findings 10

TRST-M-1 GmxHedgingReactor::getPoolDenominatedValue() does not include pending increase of

position 10

TRST-M-2 BeyondPricer and GmxHedgingReactor are implicitly coupled to USDC collateral 10

TRST-M-3 Theoretical reentrancy in OptionRegistry::open() can lock funds 11

TRST-M-4 OptionExchange::_buyOption()/_sellOption() will not lead to update of LiquidityPool’s

ephemeralDelta 12

TRST-M-5 OptionExchange::_buyOption() may fail due to incorrect option balance assumption 12

TRST-M-6 OptionExchange::redeem() results in losses for liquidity providers from fees/slippage

when converting non-USDC collateral 13

TRST-M-7 When changing position direction in GmxHedgingReactor::_changePosition() many

calculations could be incorrect 13

TRST-M-8 Anyone can reset the GMX reactor's callback variables 15

TRST-M-9 When changing positions, GMX reactor can wrongly assume there's no pending callbacks

 16

Low severity findings 17

TRST-L-1 GmxHedgingReactor::getPoolDenominatedValue() does not include pending decrease

position under some conditions 17

TRST-L-2 Unexpected leak of value when executing Opyn WithdrawCollateral or Settle actions 17

TRST-L-3 Hedging reactors with delayed position updates (e.g. GmxHedgingReactor) will not be

removed correctly by LiquidityPool::removeHedgingReactorAddress() 18

Trust Security Rysk Beyond

TRST-L-4 Calling GmxHedgingReactor::setPositionRouter() while there are pending GMX position

changes will freeze functions 19

TRST-L-5 GmxHedgingReactor::update() can calculate incorrect values when there are pending

position changes 19

TRST-L-6 UniswapV3RangeOrderReactor does not comply with hedgeDelta() API 20

TRST-L-7 Option pricing does not take into account all collateral allocated 21

TRST-L-8 Lack of safety checks when issuing existing options via issueNewSeries() 21

TRST-L-9 collateralAsset == strikeAsset assumption is not guaranteed 22

TRST-L-10 GmxHedgingReactor::sweepFunds only sweeps ETH 22

TRST-L-11 LiquidityPool::executeEpochCalculation may fail depending on withdraw behaviour 23

TRST-L-12 GmxHedgingReactor’s internalDelta is trusted but could be stale 23

TRST-L-13 Waiving fees in OptionExchange leads to misaligned incentives 24

Additional recommendations 25

Add validation to constructor parameters 25

Add checks for all possible values of enumerations 25

Multiple copies of formatStrikePrice() function 25

Documentation errors 25

Use of magic numbers 26

Naming of functions 26

Lack of event emission 26

Parsing safety checks 26

Separate safety checks 27

Accounting precautions 27

Removing unused code 27

Unrecommended usage of PRBMath functions for non-PRB numbers 27

Naming conventions for public functions 27

Naming mismatch isBuy/isSell 27

Mitigating reentrancy risks 27

Passing incorrect slippage value in GmxHedgingReactor::_increasePosition() 28

Use of variables instead of literals 28

GMX hedgeDelta() does not fulfill API 28

rebalancePortfolioDelta() ignores actual delta executed 28

migrateOTokens() can migrate all types of tokens 28

Centralization risks 29

Governance pricing strategy is trusted 29

GMX solvency risks 29

Compromised owner risks 29

Trust Security Rysk Beyond

Document properties

Versioning

Version Date Description

0.1 09/03/23 Client report

0.2 29/03/23 Mitigation review

0.3 29/03/23 Mitigation review #2

Contact

Or Cyngiser, AKA Trust

boss@trustindistrust.com

Trust Security Rysk Beyond

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate. Specifically, the object

of focus has been migration from Rysk Alpha to Rysk Beyond and its possible repercussions.

Scope

• libraries/AccessControl.sol

• libraries/BlackScholes.sol

• libraries/CombinedActions.sol

• libraries/CustomErrors.sol

• libraries/NormalDist.sol

• libraries/OptionsCompute.sol

• libraries/OpynInteractions.sol

• libraries/RyskActions.sol

• libraries/SABR.sol

• libraries/Types.sol

• Accounting.sol

• AlphaPortfolioValuesFeed.sol

• BeyondPricer.sol

• LiquidityPool.sol

• OptionExchange.sol

• OptionCatalogue.sol

• OptionRegistry.sol

• PriceFeed.sol

• VolatilityFeed.sol

• hedging/GMXHedgingReactor.sol

Repository details

• Repository URL: https://github.com/rysk-finance/dynamic-hedging

• Commit hash: 541df6f606f09ab690af270e636c0f4bdb1f6bca

• Mitigation review hash: 28a36d4f768aef6194005ad37f35b06e7b4d95d6

• Mitigation review 2 hash: 1b0f75cc529545d52710b64c16d9a94983620d26

About Trust Security

https://github.com/rysk-finance/dynamic-hedging

Trust Security Rysk Beyond

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Trust is the leading auditor at competitive auditing

service Code4rena, reported several critical issues to Immunefi bug bounty platform and is

currently a Code4rena judge.

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the

audited code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any

additional dependencies on external code have also been reviewed.

Trust Security Rysk Beyond

Qualitative analysis

Metric Rating Comments
Code complexity

Good

The Project has structured
the codebase to cope well
with the inherent
complexity involved.

Documentation

Excellent

Project is very well

documented.

Best practices

Good

Project mostly adheres to
industry standards.

Centralization risks

Moderate The protocol cannot be
considered completely
decentralized with the
way pricing and
adjustments are handled
by the team. However this
is still a big step in the
right direction.

Trust Security Rysk Beyond

Findings

High severity findings

TRST-H-1 Unbounded slippage in OptionExchange::_buyOption() and _sellOption()

makes users vulnerable to sandwich attack
● Category: MEV

● Source: OptionExchange.sol

● Status: Fixed

Description

Rysk prices options in a way that incentivizes reduced vault exposure to the underlying. It

discounts trades reducing exposure and upsizes fees when trades increase exposure, which

is performed in _getSlippageMultiplier() in BeyondPricer. For example, an increased delta of

+x when the vault is at +10x will price a much higher premium than when vault is at +x.

Meanwhile, when users purchase or sell options via the OptionExchange, they do not specify

a minimum or maximum execution price. This combination of factors opens up the following

sandwich attack when user calls buyOption():

1) Attacker calls buyOption() with a large oToken request, driving down the net

exposure of the vault to a very large negative value.

2) Victim's TX is sandwiched, executing the buyOption() when short exposure is already

high and causing a very high premium to be charged.

3) Attacker calls sellOption() and sells the tokens from (1). They return the vault back to

previous exposure level except victim's TX, picking up the high premium paid by the

victim.

Since users of the protocol don't know the quote ahead of time, it is likely they will perform

a max approval to OptionExchange which would allow the attacker to drain essentially their

entire wallet, given a large enough initial bankroll to fund the manipulation. Additionally, a

symmetrical attack can be performed on a sellOption() transfer, where the premium the

protocol will pay for the user's oTokens can be lowered to a negligible value with the

opposite manipulation.

Recommended mitigation

Incorporate slippage control values in the user-supplied trade structure, and disallow trades

that cause slippage to exceed the specified amount.

Team response

Resolved.

Mitigation review

OptionExchange receives the max slippage user is willing to undertake, and correctly

validates that the dynamic premium does not exceed it.

Trust Security Rysk Beyond

TRST-H-2 Decreasing positions in GMXHeadingReactor may lead to unhealthy

positions
● Category: Logical Flaw

● Source: GmxHedgingReactor.sol

● Status: Acknowledged

Description

When trying to decrease the existing GMX position in _changePosition(), reached from

hedgeDelta(), it uses _getCollateralSizeDeltaUsd() to calculate the changed delta. When the

position is losing, the function takes into account the unrealized losses and deducts them

from the collateral to decrease, possibly making the amount go negative (highlighted in

bold).

uint256 adjustedAmount = _amount < position[0].div(position[2])

 ? _amount

 : position[0].div(position[2]);

uint256 d = adjustedAmount.mul(position[2]).div(position[0]);

{

 // we need to adjust the collateral to remove by 1% to account for

oracle price changes between this call and the gmx callback

 collateralToRemove =

 (((int256(position[1] / 1e12) -

 ((int256(position[0]) / 1e12).mul(1e18 -

int256(d)).div(int256(leverageFactor)))) -

 int256(position[8] / 1e12)) * collateralRemovalPercentage) /

 10000;

}

Later, if the result is negative, it simply changes it to 0.

if (collateralToRemove < 0) {

 adjustedCollateralToRemove = uint256(0);

} else {

 adjustedCollateralToRemove = uint256(collateralToRemove);

This is an issue because instead of actually increasing the amount of collateral required, the

function only does not remove any existing collateral. As losses are realized, it may lead to a

borderline position, which is close to liquidation. The position's health can eventually be

replenished by a future update() call, however by that time it may already be too late and

the position may be liquidated.

Recommended mitigation

Rewrite the code to first increase the collateral by the required amount, and only then

decrease the position size and realize losses.

Team response

Acknowledged. Health is verified by an off-chain bot setup so the increased complexity in

the fix suggested is not necessary.

Trust Security Rysk Beyond

Medium severity findings

TRST-M-1 GmxHedgingReactor::getPoolDenominatedValue() does not include

pending increase of position
● Category: Logical flaw

● Source: GmxHedgingReactor.sol

● Status: Fixed

Description

GMX has a two-step process for increasing/decreasing positions where a request is

submitted and remains in a pending state until it is executed by a keeper. If

getPoolDenominatedValue() is called just after a call to GMX’s createIncreasePosition() (but

before the request is executed), it will not take the increase into account leading to incorrect

NAV evaluation in executeEpochCalculation().

Recommended mitigation

Fetch the pending position change request directly from GMX when calculating the pool

value. Such code exists in other option-trading projects.

Team response

Resolved

Mitigation review

Fixed by adding the amount in transit to the NAV if necessary.

TRST-M-2 BeyondPricer and GmxHedgingReactor are implicitly coupled to USDC

collateral
● Category: Hard-coding issues

● Source: BeyondPricer.sol, GmxHedgingReactor.sol

● Status: Fixed

Description

BeyondPricer::quoteOptionPrice() returns the fee and premium in USDC decimals.

totalPremium = (premium.mul(_amount) + spread) / 1e12;

totalDelta = delta.mul(int256(_amount));

totalFees = feePerContract.mul(_amount);

In GMXHedgingReactor::update(), GMX’s 30 decimal values are divided by 1e24.

Both of these are USDC dependent. If the collateralAsset changes to another token (e.g.

DAI) these calculations are off by orders of magnitude.

Recommended mitigation

Calculate the divisors dynamically when setting the collateralAsset. Consider uncovering all

instances of USDC-coupling by reviewing the code.

Trust Security Rysk Beyond

Team response

Resolved

Mitigation review

In BeyondPricer, decimals are dynamically checked from the ERC20 contract. In

GmxHedgingReactor, decimal count is explicit as the constants

GMX_TO_COLLATERAL_DECIMALS and COLLATERAL_ASSET_DECIMALS have been

introduced.

TRST-M-3 Theoretical reentrancy in OptionRegistry::open() can lock funds
● Category: reentrancy flaws

● Source: OptionRegistry.sol

● Status: Fixed

Description

If vaultId_ is zero for the provided option series a new vault is created. The new vaultId_ is

only set in the vaultIds mapping after the short tokens are minted and sent to msg.sender. If

the function was to be reentered with the same series, yet another vault (with a higher vault

ID) would be created for the same series and the vaultIds mapping would be overridden

with the lower vaultId_ before returning. The registry would permanently lose access to the

higher vault ID.

if (vaultId_ == 0) {

 vaultId_ = (controller.getAccountVaultCounter(address(this))) + 1;

 vaultCount++;

}

uint256 mintAmount = OpynInteractions.createShort(

 gammaController,

 marginPool,

 _series,

 collateralAmount,

 vaultId_,

 amount,

 1

);

emit OptionsContractOpened(_series, vaultId_, mintAmount);

// transfer the option to the liquidity pool

SafeTransferLib.safeTransfer(ERC20(_series), msg.sender, mintAmount);

vaultIds[_series] = vaultId_;

Recommended mitigation

Follow the checks-effects-interaction pattern and move line 271 (below) to just after the

checks on lines 255-258

vaultIds[_series] = vaultId_;

Team response

Resolved

Trust Security Rysk Beyond

Mitigation review

Recommended fix has been applied.

TRST-M-4 OptionExchange::_buyOption()/_sellOption() will not lead to update of

LiquidityPool’s ephemeralDelta
● Category: Logical Flaw

● Source: OptionExchange.sol

● Status: Fixed

Description

The liquidity pool's ephemeralDelta keeps track of the current exposure when the portfolio

has not yet been updated via the periodic fulfill() call. There are two situations when the

delta is leaked. In _buyOption(), any delta fulfilled using the existing OptionExchange

exposure does not update it (because it does not go through handlerWriteOption()). In

_sellOption(), any delta not delivered through the buyback mechanism doesn't update the

ephemeral value. As a result, hedging may not be effective for prolonged periods.

Recommended mitigation

Expose LiquidityPool's _adjustVariables() and call it from the exchange in the described

flows.

Team response

Resolved.

Mitigation review

Fixed with the suggested mitigation.

TRST-M-5 OptionExchange::_buyOption() may fail due to incorrect option balance

assumption
● Category: Logical Flaw

● Source: OptionExchange.sol

● Status: Fixed

Description

In buyOption(), if there is existing long exposure registered in the portfolio, the exchange will

directly sell oTokens to the sender instead of buying additional options through Opyn.

int256 longExposure =

portfolioValuesFeed.storesForAddress(buyParams.seriesAddress).longExp

osure;

uint256 amount = _args.amount;

emit OptionsBought(buyParams.seriesAddress, recipient, amount,

buyParams.premium, buyParams.fee);

if (longExposure > 0) {

 // calculate the maximum amount that should be bought by the user

 uint256 boughtAmount = uint256(longExposure) > amount ? amount :

uint256(longExposure);

Trust Security Rysk Beyond

 // transfer the otokens to the user

 SafeTransferLib.safeTransfer(

 ERC20(buyParams.seriesAddress),

 recipient,

 boughtAmount / (10**CONVERSION_DECIMALS)

);

However, the exchange makes the assumption that whatever exposure is recorded in the

portfolio is available as oTokens in the Exchange contract. That may not be the case when

additional handlers store their own exposures in the portfolio. The impact is denial of service

when buying options with longExposure > 0, and oToken balance is depleted in the

exchange.

Recommended mitigation

Calculate the minimum transferrable tokens using the oToken balance of the exchange.

Team response

Resolved.

Mitigation review

Fixed by inserting a balance check.

TRST-M-6 OptionExchange::redeem() results in losses for liquidity providers from

fees/slippage when converting non-USDC collateral
● Category: Logical Flaw

● Source: OptionExchange.sol

● Status: Acknowledged

Description

When an oToken’s collateral is not USDC, redeem() will use a UniswapV3 compatible router

to swap to USDC. However, this results in losses from fees/slippage for the liquidity provider

which option buyers/sellers on the exchange potentially benefit from.

Recommended mitigation

Add a per-collateral premium / fee component for non-USDC collateralized assets, to reduce

conversion related risks to the platform.

Team response

Acknowledged.

TRST-M-7 When changing position direction in

GmxHedgingReactor::_changePosition() many calculations could be incorrect
● Category: Logical Flaw

● Source: GmxHedgingReactor.sol

● Status: Fixed

Trust Security Rysk Beyond

Description

Several parts of the GMX reactor code assume that internalDelta is all delta in the current

position i.e. there is one active position. However, the hedging reactor could get into a state

where there were two open GMX positions, one long and one short.

This can happen when a decrease position request fails, but an increase position request

succeeds. Since GMX position changes are not necessarily atomic, a GMX keeper could try

to execute one position request in a different block to the other and a significant sharp price

change could cause it to fail.

As a result of the two open GMX positions, functions such as _adjustedReducePositionSize()

and _getPositionSizeDeltaUsd() would return incorrect results. This could lead to leaving a

position in bad health, risking loss of funds.

Recommended mitigation

Consider simplifying the amount of possible states the contract may be in, by increasing a

new position only after the previous position has been completely nullified.

Team response

Resolved.

Mitigation review

The fix introduces openLongDelta, openShortDelta, and longAndShortOpen variables to

handle the multi-position state. When a new position is executed by GMX and the opposite

direction position exists, longAndShortOpen is set to true. When a position drops to zero, it

is set to false.

An issue still persists in the update() mechanism. New logic attempts to consolidate two

opposite-directed positions.

if (_internalDelta >= 0) {

 // we are net long/neutral. close shorts

 uint256[] memory shortPosition = _getPosition(false);

 uint256 shortDelta = (shortPosition[0]).div(shortPosition[2]);

 collateralToRemoveShort = _getCollateralSizeDeltaUsd(false, false,

shortDelta, false);

 (bytes32 key1, int deltaChange1) = _decreasePosition(

 shortDelta,

 collateralToRemoveShort,

 false

);

 decreaseOrderDeltaChange[key1] += deltaChange1;

 // then reduce longs by same delta

 collateralToRemoveLong = _getCollateralSizeDeltaUsd(false, false,

shortDelta, true);

 (bytes32 key2, int deltaChange2) = _decreasePosition(shortDelta,

collateralToRemoveLong, true);

 decreaseOrderDeltaChange[key2] += deltaChange2;

Essentially, it removes position and collateral from both sides, nullifying the short position in

case the long one is greater. However, the highlighted line does not guarantee that the short

position will be deleted. When calculating shortDelta, rounding will make the delta slightly

Trust Security Rysk Beyond

less than the effective delta. Later when decreasing by this delta, it will convert it to a

position size which is slightly less than the real position size.

function _getPositionSizeDeltaUsd(

 uint256 _size,

 uint256 positionSize,

 bool _isLong

) private view returns (uint256) {

 return _size.mul(positionSize).div(_isLong ? openLongDelta :

openShortDelta);

}

As a result, update() may be perpetually stuck in the consolidation phase and not handle

isBelowMin or isAboveMax scenarios, greatly increasing the risk of unhealthy positions.

Recommended mitigation

Use openShortDelta and openLongDelta instead of calculating them dynamically, when

consolidating positions.

Mitigation review #2

The suggested fix has been applied.

TRST-M-8 Anyone can reset the GMX reactor's callback variables
● Category: Logical Flaw

● Source: GmxHedgingReactor.sol

● Status: Fixed

Description

The variables pendingIncreaseCallback / pendingDecreaseCallback signal there is an

uncompleted GMX request. The reactor supports a way to force its execution, with

executeIncreasePosition() or executeDecreasePosition().

In the mitigation review commit, code has changed and now the GMX call is wrapped in a

try/catch.

function executeIncreasePosition(bytes32 positionKey) external {

 pendingIncreaseCallback = false;

 try gmxPositionRouter.executeIncreasePosition(positionKey,

payable(address(this))) {} catch {}

}

The issue is that when executeIncreasePosition() fails, for example if the function was called

too quickly, the callback variable is still reset to false. Effectively, this allows anyone to

disable the safety checks around these variables in a variety of GMX functions.

Recommended mitigation

Either set the function to be callable only by the keeper, or do not set the callback variables

to false if an exception occurred.

Trust Security Rysk Beyond

Team response

Resolved

Mitigation review

The execute() functions no longer change state. The relevant state changes are only applied

through the callback. Additionally, a governor-controlled recovery function has been added

in case of state desynchronization.

TRST-M-9 When changing positions, GMX reactor can wrongly assume there's no

pending callbacks
● Category: Logical Flaw

● Source: GmxHedgingReactor.sol

● Status: Fixed

Description

The variables pendingIncreaseCallback / pendingDecreaseCallback signal there is an

uncompleted GMX request. If there is a pending callback, update() and hedgeDelta() revert.

The way in which two positions are handled in update() makes it possible that the callback is

set to false, although the contract expects another callback.

update() calls _decreasePosition() twice, on opposite positions. When the first one

completes, GMX calls gmxPositionCallback() on the reactor contract, which will set

pendingDecreaseCallback to false. As there is still a pending position, it shouldn't be

possible to call hedgeDelta() or update() at this moment, however that is not the case.

Therefore it is possible that delta hedging would be incorrect, or that the positions would

not be healthy.

if (isIncrease) {

 pendingIncreaseCallback = false;

 delete increaseOrderDeltaChange[positionKey];

 delete pendingIncreaseCollateralValue;

} else {

 pendingDecreaseCallback = false;

 delete decreaseOrderDeltaChange[positionKey];

}

Recommended mitigation

Only set the callback variable to false once both position requests have been executed.

Team response

Resolved

Mitigation review

Fixed by changing the callback variables to be uint8 data type. Multiple decrease requests

are handled correctly.

Trust Security Rysk Beyond

Low severity findings

TRST-L-1 GmxHedgingReactor::getPoolDenominatedValue() does not include pending

decrease position under some conditions
● Category: Ordering assumptions

● Source: GmxHedgingReactor.sol

● Status: Fixed

Description

GMX has a two-step process for increasing/decreasing positions where a request is

submitted and remains in a pending state until it is executed by a keeper. Sometimes delta

will change so much that a call to _changePosition will submit both a decrease position and

an increase position request to GMX to close out a short/long position and open a

long/short position. However, the position increase could be executed first leaving the

decrease still pending. The internalDelta could switch to the opposite sign affecting results

returned by _getPosition(internalDelta > 0). The impact is that the original short/long

position is not counted by getPoolDenominatedValue() leading to incorrect NAV evaluation

in executeEpochCalculation().

Recommended mitigation

Consider adding the value from both possible positions, rather than assuming only one is

non-zero.

Team response

Resolved

Mitigation review

Recommended fix has been applied.

TRST-L-2 Unexpected leak of value when executing Opyn WithdrawCollateral or Settle

actions
● Category: Logical Flaw

● Source: OptionExchange.sol

● Status: Fixed

Description

OptionExchange supports running multiple operations in succession, with funds storable in

the exchange itself for the next action. In the post-execution check, any leftovers will be

transferred back to the sender. Function _runOpynActions() performs a number of checks

and effects before calling Opyn’s Controller::operate() function with the relevant action.

However, it doesn’t check actions OpenVault, WithdrawCollateral or Settle. The latter two

actions are similar enough to WithdrawLongOption and MintShortOption that they should

Trust Security Rysk Beyond

follow the same convention of checking whether action.secondAddress == address(this) and

calling _updateTempHoldings() if true.

The impact is that a user could accidentally send tokens to the exchange thinking they would

be handled with the same convention.

Recommended mitigation

Add else-if statements to handle the case where action.secondAddress == address(this).

Team response

Resolved.

Mitigation review

Fixed by ensuring the destination of WithdrawCollateral and SettleVault actions is

msg.sender.

TRST-L-3 Hedging reactors with delayed position updates (e.g. GmxHedgingReactor)

will not be removed correctly by LiquidityPool::removeHedgingReactorAddress()
● Category: Logical Flaw

● Source: GmxHedgingReactor.sol

● Status: Fixed

Description

Function removeHedgingReactorAddress() has the following lines:

if (delta != 0) {

 reactor.hedgeDelta(delta);

}

reactor.withdraw(type(uint256).max);

However, since GMX withdrawal is two step, the withdrawal needs to be delayed until the

corresponding decreasePosition() call has been executed, at which point the funds are

transferred to the reactor. Since this operation removes the reactor from the pool, there's a

risk that the funds will be forever left in the reactor.

This issue has been classified as low as, if noticed, an easy fix would be to add and remove

the reactor again once the pending position decrease goes through.

Recommended mitigation

Only allow removal of a reactor if it is not awaiting additional actions. Consider modifying

withdraw() to revert when given type(uint256).max as an argument but there are still

pending position changes. This should ensure backwards compatibility with the hedging

reactor interface while allowing for the pending checks to be done.

Team response

Resolved.

Mitigation review

Trust Security Rysk Beyond

Withdrawals now validate that there is no pending increase or decrease position.

TRST-L-4 Calling GmxHedgingReactor::setPositionRouter() while there are pending

GMX position changes will freeze functions
● Category: Logical Flaw

● Source: GmxHedgingReactor.sol

● Status: Fixed

Description

If function setPositionRouter() gets called while there are pending create/decrease positions

then pendingIncreaseCallback or pendingDecreaseCallback will remain true breaking

functions hedgeDelta() and update().

When GMX’s PositionRouter calls function _callRequestCallback it will not revert even

though the call to gmxPositionCallback() will revert (due to the access control check on line

790). This is because GMX uses a try/catch block in their code.

The impact is that GmxHedgingReactor can no longer be used to change positions leading to

a lack of hedging functionality and capital being locked in GMX.

As it is unlikely that this bug would ever be triggered its risk has been assessed as low. Even

if it did happen setPositionRouter() could be called on a fake contract that Rysk controls

which could perform fake callbacks to reset the

pendingIncreaseCallback/pendingDecreaseCallback variables. This would have to be done

with caution to ensure that the changes to internalDelta caused by the call the

gmxPositionCallback() mirrored what would have occurred as a result of the genuine

callbacks from GMX.

Recommended mitigation

1. Don’t allow setPositionRouter() to be called when

pendingIncreaseCallback/pendingDecreaseCallback are not both false.

2. Allow for the callback values to be manually set back to false by admins.

Team response

Resolved.

Mitigation review

setPositionRouter() now validates that there is no pending increase or decrease position.

TRST-L-5 GmxHedgingReactor::update() can calculate incorrect values when there are

pending position changes
● Category: Ordering assumptions

● Source: GmxHedgingReactor.sol

● Status: Fixed

Trust Security Rysk Beyond

Description

If update() is called again while there is still a pending increase/decrease, its call to

checkVaultHealth() will be using the old value of internalDelta. However, the health may

have changed which leads to a call to _addCollateral() when the previous call was to

_removeCollateral() or vice versa. This may succeed in creating a new GMX position change

request in the opposite direction even though checkVaultHealth() would have returned

something different if the first call had already been processed.

Functions _increasePosition() /_decreasePosition() are protected from being called twice via

the use of the pending[Increase/Decrease]Callback variables but nothing prevents two

being open at the same time.

The impact is that the incorrect amount of collateral is added/removed. This has been

assessed as low risk since it is unlikely that update() will be called this frequently, nor that

the health of the position would change so quickly.

Recommended mitigation

Ideally, simplify state so that only one request can be active at a given time, regardless of

direction.

Team response

Resolved

Mitigation review

State management has improved. The update() function will perform specialized logic when

two positions are open at the same time. Also, update() cannot be called while there are

pending position requests.

TRST-L-6 UniswapV3RangeOrderReactor does not comply with hedgeDelta() API
● Category: API issues

● Source: UniswapV3RangeOrderReactor.sol

● Status: Acknowledged

Description

The expected behavior of hedgeDelta() API is to increase the underlying exposure by the

delta amount. However, UniswapV3RangeOrderReactor instead removes all previous

exposure and hedges the input delta.

Recommended mitigation

Line up the hedgeDelta() behavior to be the same as all other reactors.

Team response

Acknowledged

Trust Security Rysk Beyond

TRST-L-7 Option pricing does not take into account all collateral allocated
● Category: Logical Flaw

● Source: BeyondPricer.sol

● Status: Acknowledged

Description

Option pricing takes into account the collateral allocation costs required to collateralize the

oTokens minted by the registry. It is included in the spread value costs. However, the

amount multiplied by the lending rate is the exact amount required to stay non-

liquidateable. In fact, the collateral allocated by the pool is much higher, and comprised of

two additional factors. The bufferPercentage variable defines the ratio between collateral

allocated and collateral available in the pool, which cannot be crossed. In practice this makes

the remaining portion of the collateral unusable. Additionally, the health factor should never

actually be on the border of liquidation, as keepers ensure it is above a certain threshold

(110-130%). These aspects make option pricing unattractive for LPs as most of the collateral

is sitting idle and the premium does not reimburse them for it.

Recommended mitigation

When pricing options, consider calculating allocated collateral in a way that is accurate to

the actual system functionality.

Team response

Acknowledged

TRST-L-8 Lack of safety checks when issuing existing options via issueNewSeries()
● Category: Logical Flaw

● Source: OptionCatalogue.sol

● Status: Acknowledged

Description

The function issueNewSeries() performs a check for whether an option series has already

been issued.

// if the option is already issued then skip it

if (optionStores[optionHash].approvedOption) {

 continue;

}

However, it does not check whether the isBuyable and isSellable fields are the same or not.

In the latter case the option series fields should be updated to the new ones.

Recommended mitigation

Add a check on isBuyable/isSellable and update them if they are different from before, or

revert to be 100% sure the change is intentional.

Team response

Acknowledged

Trust Security Rysk Beyond

TRST-L-9 collateralAsset == strikeAsset assumption is not guaranteed
● Category: Logical Flaw

● Source: LiquidityPool.sol

● Status: Acknowledged

Description

It is a stated assumption that the incoming series' collateralAsset == strikeAsset in

LiquidityPool. In _issue(), it checks that incoming asset is the same as the pool's asset.

// make sure option is being issued with correct assets

if (optionSeries.collateral != collateralAsset) {

 revert CustomErrors.CollateralAssetInvalid();

}

if (optionSeries.underlying != underlyingAsset) {

 revert CustomErrors.UnderlyingAssetInvalid();

}

if (optionSeries.strikeAsset != strikeAsset) {

 revert CustomErrors.StrikeAssetInvalid();

}

The assumption holds for the deployed pool as the two assets are the same, however other

pool deployments could have different assets. This would break several assumptions in

LiquidityPool calculations.

Recommended mitigation

Add a check that incoming collateralAsset == strikeAsset, or refactor code that assumes it

holds.

Team response

Acknowledged

TRST-L-10 GmxHedgingReactor::sweepFunds only sweeps ETH
● Category: Logical Flaw

● Source: GmxHedgingReactor.sol

● Status: Acknowledged

Description

The sweepFunds() function allows the governor to pull any ETH in the contract. However,

since the reactor also may hold other tokens such as collateral, it is advisable to support

rescuing of ERC20 tokens as well.

Recommended mitigation

Support sweeping of collateral tokens by the governor.

Team response

Trust Security Rysk Beyond

Acknowledged

TRST-L-11 LiquidityPool::executeEpochCalculation may fail depending on withdraw

behaviour
● Category: Logical Flaw

● Source: LiquidityPool.sol

● Status: Acknowledged

Description

The following code in LiquidityPool suggests that withdrawing amount x may result is

withdrawing more than x.

amountNeeded -=

IHedgingReactor(hedgingReactors_[i]).withdraw(amountNeeded);

if (amountNeeded <= 0) {

 break;

}

However, amountNeeded is defined as a uint256 variable so if withdraw allows this behavior

the code would revert.

Recommended mitigation

If withdraw() aims to support over-withdrawals, change the amountNeeded data type to

int256.

Team response

Acknowledged

TRST-L-12 GmxHedgingReactor’s internalDelta is trusted but could be stale
● Category: Logical Flaw

● Source: GmxHedgingReactor.sol

● Status: Fixed

Description

The internalDelta variable is used for important calculations such as getting the position size

and collateral size change, as well as determining if the current position is short or long.

However, if liquidation occurs the true delta can change without this variable being updated.

Recommended mitigation

It’s important that any code that uses internalDelta calls sync() first, to make sure it uses

correct data.

Team response

Resolved.

Mitigation review

Trust Security Rysk Beyond

Recommended mitigation has been applied.

TRST-L-13 Waiving fees in OptionExchange leads to misaligned incentives
● Category: Incentives issues

● Source: OptionExchange.sol

● Status: Fixed

Description

Fees are waived if they are over 12.5% of the premium.

if ((sellParams.premium >> 3) > sellParams.fee) {

 SafeTransferLib.safeTransfer(ERC20(collateralAsset), feeRecipient,

sellParams.fee);

} else {

 // if the total fee is greater than premium / 8 then the fee is

waived, this is to avoid disincentivising selling back to the pool

for collateral release

 sellParams.fee = 0;

}

However, this has two negative side effects. Obviously less fees are generated but more

importantly it incentivizes holding oTokens until the premium is low enough to waive the

fees. It creates a step-function discontinuity whereby if the premium drops a small amount

the overall amount the user receives will be higher. This incentivizes waiting for the

premium to drop.

Recommended mitigation

It would probably be best to cap fees at the maximum amount, i.e. 12.5%, rather than waive

the fee.

Team response

Resolved

Mitigation review

Suggested fix has been applied.

Trust Security Rysk Beyond

Additional recommendations

Add validation to constructor parameters

There is a general lack of validation on parameters to contract constructors. The most

common omission is not checking that provided address are not equal to zero.

Add checks for all possible values of enumerations

The Rysk codebase makes frequent use of enumeration types. Consider the example below:

} else if (actionType == IController.ActionType.Liquidate) {

 revert ForbiddenAction();

} else if (actionType == IController.ActionType.Call) {

 revert ForbiddenAction();

}

_opynArgs[i] = action;

If the ActionType enum will ever be extended for additional types by Opyn, they will be

transparently passed to the Opyn controller without filtering. It is considered bad practice to

have a permissive catch-all case when handling enums.

Multiple copies of formatStrikePrice() function

Consider moving functions that are implemented in the same way across different contracts

to a common utility library.

Documentation errors

In OptionRegistry::getCollateral():

/**

 * @notice Send collateral funds for an option to be minted

 * @dev series.strike should be scaled by 1e8.

 * @param series details of the option series

 * @param amount amount of options to mint always in e18

 * @return amount transferred

 */

function getCollateral(Types.OptionSeries memory series, uint256

amount)

 external

 view

 returns (uint256)

{

The function is a view and doesn't send funds. It only calculates the amount.

In LiquidityPool::deposit():

Trust Security Rysk Beyond

/**

 * @notice function for adding liquidity to the options liquidity

pool

 * @param _amount amount of the strike asset to deposit

 * @return success

 * @dev entry point to provide liquidity to dynamic hedging vault

 */

function deposit(uint256 _amount) external whenNotPaused nonReentrant

returns (bool) {

Documentation states it is transferring strikeAsset, however it actually transfers

collateralAsset.

SafeTransferLib.safeTransferFrom(collateralAsset, msg.sender,

address(this), _amount);

In GmxHedgingReactor::changePosition():

// remove the adjustedPositionSize from _amount to get remaining

amount of delta to hedge to open shorts with

_amount = _amount - int256(adjustedPositionSize);

Calculated amount is actually the amount to open longs with.

Use of magic numbers

There are many occurrences of magic numbers in the code base e.g. 1e24, 11000, 1e18,

1e12 in GmxHedgingReactor. There is no run-time cost to declaring them as constants and it

can only improve readability and resistance to errors when making changes.

Naming of functions

LiquidityPool::getBalance() deducts partitionedFunds, but it’s only correct to deduct if the

parameter asset is collateralAsset. Consider renaming to getCollateralBalance().

Lack of event emission

Some functions such as setPricer() and setOptionCatalogue() don’t emit an event which

harms the visibility of the protocol.

Parsing safety checks

In parsing of combined actions into Rysk / Opyn actions, consider enforcing that unused

arguments are zeroes, to protect against user errors and further limit the attack surface.

Trust Security Rysk Beyond

Separate safety checks

In OptionExchange::_checkHash() many safety checks are done that have nothing to do with

the hash. It is better to separate them into appropriately named functions to improve

readability and modifiability of the contract.

Accounting precautions

In _sellOption(), tempHoldings is set to the whole heldTokens and then heldTokens is

decremented by up to amount. It’s best to store in tempHoldings only the decrement

amount, because tempHoldings is deducted from in different places and it should never

allow deducting more than _args.amount.

Removing unused code

Several functions and structures are unused. Consider removing them to cut down the code

size and improve readability.

Unrecommended usage of PRBMath functions for non-PRB numbers

In AlphaPortfolioValuesFeed::updateStores() the following code is used:

if (uint256(netDhvExposure[oHash].abs()) > maxNetDhvExposure) revert

MaxNetDhvExposureExceeded();

abs() is used from PRBMathSD59x18, which is a fixed point operations library, but the

exposure is an int256. Luckily, abs() is implemented safely for integer numbers so there is no

impact. Consider abandoning similar uses of fixed-point libraries for integers.

Naming conventions for public functions

The LiquidityPool::_getVolatilityFeed() function is marked as public. It is bad practice to

begin a public function name with an underscore.

Naming mismatch isBuy/isSell

BeyondPricer::quoteOptionPrice() receives the isSell parameter, which is for the case that

the user is selling options. It is then passed to quotePriceGreeks(), which accepts it as isBuy.

The function operates correctly, but the terminology mixes between the user and the vault's

perspective of the trade direction.

Mitigating reentrancy risks

Trust Security Rysk Beyond

OptionRegistry::registerLiquidatedVault() will get the liquidation details, update the

collateral on the liquidity pool and then clear the liquidation details. This makes it

theoretically vulnerable to over-updating of the collateral if attacker was to re-enter before

clearing. It is best to clear the vault immediately.

Passing incorrect slippage value in GmxHedgingReactor::_increasePosition()

The minOut parameter of increasePosition() is always set to min WETH swap output,

however when increasing short positions no swap is done from collateral, so it should set

that parameter to zero.

Use of variables instead of literals

In _changePosition(), if the GMX reactor first decreases the original position, it passes

closedOppositeSideFirst instead of passing false. Logically it is best to pass constants or

literals when the value should not ever be different.

GMX hedgeDelta() does not fulfill API

hedgeDelta() should return only the delta change immediately active, as is done in

UniswapV3RangeOrderReactor:

// satisfy interface, delta only changes when range order is filled

return 0;

However, the GMX reactor activity is not immediate (it can still fail if the second step fails),

but the planned delta is already returned.

rebalancePortfolioDelta() ignores actual delta executed

The hedgeDelta() API returns the actual delta executed. When rebalance is called, the return

value is ignored, possibly causing confusion around the real delta. Additionally, if called from

Manager.sol, the intended delta counts for the keeper’s limit, rather than the one executed.

deltaLimit[msg.sender] -= absoluteDelta;

liquidityPool.rebalancePortfolioDelta(delta, reactorIndex);

migrateOTokens() can migrate all types of tokens

In OptionExchange, migrateOTokens() is used to move ERC20 oTokens to the next exchange.

There is a slight overprivilege concern as this function also allows transfer of any ERC20

token, including the collateral token which should only be vacated for the liquidity pool.

Consider verifying that the token is an oToken.

Trust Security Rysk Beyond

Centralization risks

Governance pricing strategy is trusted

The SABR and other parameters, which eventually determine option pricing, are dynamically

controlled by governance. LPs should be aware that an inadequate strategy would result in

losses for the protocol.

GMX solvency risks

The project sends funds to external projects such as GMX in order to hedge its position. It

should be noted that bugs, attacks or plain sharp price movements may tip the exchange

into insolvency which would erase user funds.

Compromised owner risks

Despite the protocol not being upgradeable, there are still ways a compromised multisig can

withdraw the entirety of the protocol funds, by changing trusted addresses such as the

OptionRegistry's liquidityPool, and Protocol's accounting, to malicious addresses. The

OptionRegistry can also be drained using the migrateOtokens() function.

		2023-03-29T17:54:39+0200
	Trust

