
 

Rysk Beyond – Inventory upgrade 
21/06/23 

Trust 
Security 

 

 

 

Smart Contract Audit 

  



Trust Security  Rysk Beyond - Inventory upgrade
  
  

Executive summary 
 

 

 

 

Findings 

Severity Total Fixed Acknowledged 

High - - - 

Medium 3 2 1 

Low 5 4 1 

 

Centralization score 

 

 

Centralized                   Decentralized 

 

Signature  

Category Options 

Audited file count 5 

Lines of Code 613 

Auditor Trust 

Time period 13-21/06/23 

0, High

3, 
Medium

5, Low

FINDINGS



Trust Security  Rysk Beyond - Inventory upgrade
  
  
EXECUTIVE SUMMARY 1 

DOCUMENT PROPERTIES 3 

Versioning 3 

Contact 3 

INTRODUCTION 4 

Scope 4 

Repository details 4 

About Trust Security 4 

Disclaimer 4 

Methodology 5 

QUALITATIVE ANALYSIS 6 

FINDINGS 7 

Medium severity findings 7 

TRST-M-1 The pricer will revert when pricing options with maximum allowed tenor. 7 

TRST-M-2 Black-Scholes formula is not followed for flatIV pricing model 8 

TRST-M-3 Valid orders may not be executable due to TOCTOU of option balance 9 

Low severity findings 10 

TRST-L-1 Pricing of options far in the future may be incorrect 10 

TRST-L-2 Portfolio will miscalculate exposure when AlphaOptionHandler processes orders with collateral 

different from the one set 11 

TRST-L-3 The "flat IV" parameters are not validated to be safe. 12 

TRST-L-4 DHV exposure updates do not emit adequate events 13 

TRST-L-5 OptionRegistry could emit a wrong event when issuing tokens 13 

Additional recommendations 15 

Rename functions 15 

Add safety validations to token migration 15 

EphemeralDelta should be tracked correctly 15 

Improve documentation 16 

Optimize gas through early exit 16 

Calculating length outside of loop saves gas 17 

BeyondPricer configuration is fragile 17 

Centralization risks 18 

Migration functions can be abused 18 

Pricing parameters can be abused 18 

 



Trust Security  Rysk Beyond - Inventory upgrade
  
  

Document properties 
 

Versioning 
 

Version Date Description 

0.1 21/06/23 Client report 

0.2 26/06/23 Mitigation review 

 

 

Contact 
 

Trust 

trust@trust-security.xyz 

  



Trust Security  Rysk Beyond - Inventory upgrade
  
  

Introduction 
 

Trust Security has conducted an audit at the customer's request. The audit is focused on 

uncovering security issues and additional bugs contained in the code defined in scope. Some 

additional recommendations have also been given when appropriate. 

 

Scope 
 

Changes in the following files are included in the scope. 

• AlphaOptionHandler.sol 

• AlphaPortfolioValuesFeed.sol 

• BeyondPricer.sol 

• OptionExchange.sol 

• libraries/OptionsCompute.sol 

 

Repository details 
 

• Repository URL: https://github.com/rysk-finance/dynamic-hedging/pull/540 

• Commit hash: e33c32c80c86e65f06e627a7d5f479661cb5e791 

• Repository URL: https://github.com/rysk-finance/dynamic-hedging/pull/590 

• Commit hash: fe5301c6e4e76773a7e9998b4658da118ccb07f2 

 

About Trust Security 
 

Trust Security has been established by top-end blockchain security researcher Trust, in order 

to provide high quality auditing services. Trust is the leading auditor at competitive auditing 

service Code4rena, reported several critical issues to Immunefi bug bounty platform and is 

currently a Code4rena judge. 

 

Disclaimer 
 

Smart contracts are an experimental technology with many known and unknown risks. Trust 

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited 

code or any part of the deployment phase. 

Furthermore, it is known to all parties that changes to the audited code, including fixes of 

issues highlighted in this report, may introduce new issues and require further auditing. 

https://github.com/rysk-finance/dynamic-hedging/pull/540
https://github.com/rysk-finance/dynamic-hedging/pull/590


Trust Security  Rysk Beyond - Inventory upgrade
  
  
 

Methodology 
 

In general, the primary methodology used is manual auditing. The entire in-scope code has 

been deeply looked at and considered from different adversarial perspectives. Any additional 

dependencies on external code have also been reviewed. 



Trust Security  Rysk Beyond - Inventory upgrade
  
  

Qualitative analysis 
 

Metric Rating Comments 
Code complexity 
 

Excellent 
 

The upgrade has not 
introduced significant 
complexity. 

Documentation 
 

Excellent 
 

The upgrade is 

documented in detail. 

Best practices 
 

Good 
 

Project mostly adheres to 
industry standards. 
 

Centralization risks 
 

Moderate The project multi-sig has 
far-reaching control. 

 

  



Trust Security  Rysk Beyond - Inventory upgrade
  
  

Findings 
 

Medium severity findings 
 

TRST-M-1 The pricer will revert when pricing options with maximum allowed tenor. 

• Category:  Out-of-bounds errors 

• Source: BeyondPricer.sol 

• Status: Fixed 

Description 

The upgrade introduced tenors, which are a way to customize slippage and spread parameters 

as a function of time to maturity. The correct tenor is fetched with the function below: 

function _getTenorIndex( 

   uint256 _expiration 

) internal view returns (uint16 tenorIndex, int256 remainder) { 

   // get the ratio of the square root of seconds to expiry and the 

max tenor value in e18 form 

   uint unroundedTenorIndex = (((((_expiration - block.timestamp) * 

1e18).sqrt()) * 

      (numberOfTenors - 1)) / maxTenorValue); 

   tenorIndex = uint16(unroundedTenorIndex / 1e18); // always floors 

   remainder = int256(unroundedTenorIndex - tenorIndex * 1e18); // 

will be between 0 and 1e18 

} 

 

The (tenorIndex, remainder) pair will be sent to the calculation functions, like 

_interpolateSlippageGradient(): 

function _interpolateSlippageGradient( 

   uint16 _tenor, 

   int256 _remainder, 

   bool _isPut, 

   uint256 _deltaBand 

) internal view returns (uint80 slippageGradientMultiplier) { 

   if (_isPut) { 

      int80 y1 = 

tenorPricingParams[_tenor].putSlippageGradientMultipliers[_deltaBand]

; 

      int80 y2 = tenorPricingParams[_tenor + 

1].putSlippageGradientMultipliers[_deltaBand]; 

      return uint80(int80(y1 + _remainder.mul(y2 - y1))); 

   } else { 

      int80 y1 = 

tenorPricingParams[_tenor].callSlippageGradientMultipliers[_deltaBand

]; 

      int80 y2 = tenorPricingParams[_tenor + 

1].callSlippageGradientMultipliers[_deltaBand]; 

      return uint80(int80(y1 + _remainder.mul(y2 - y1))); 

   } 

} 

 



Trust Security  Rysk Beyond - Inventory upgrade
  
  
The function interpolates two data points, the element in position _tenor and in _tenor + 1. 

Note that if _tenor is the last index, the second point will overflow the array. This condition 

will occur when the option tenor is greater than or equal to maxTenorValue. The 

maxTenorValue variable is designed to be inclusive, so the function must handle it correctly. 

Currently, the pricer will refuse to price such options. 

Recommended mitigation 

If remainder = 0, skip the interpolation and return the first data point directly. 

Team response 

Fixed. 

Mitigation review 

The three interpolation functions safely handle the case when remainder = 0. 

 

 

TRST-M-2 Black-Scholes formula is not followed for flatIV pricing model 

• Category:  Logical flaws 

• Source: BeyondPricer.sol 

• Status: Fixed 

Description 

The upgrade introduced a special "Flat IV" pricing model for options that have low delta. 

if (isSell && uint256(delta.abs()) < lowDeltaThreshold) { 

   (uint overridePremium, ) = OptionsCompute.quotePriceGreeks( 

      _optionSeries, 

      isSell, 

      bidAskIVSpread, 

      riskFreeRate, 

      lowDeltaSellOptionFlatIV, 

      forward, 

      true // override IV 

   ); 

   overridePremium = OptionsCompute.convertToDecimals( 

      overridePremium.mul(_amount), 

      ERC20(collateralAsset).decimals() 

   ); 

   totalPremium = OptionsCompute.min(totalPremium, overridePremium); 

} 

 

In this flow, the calculation ignores slippage and spread calculations in favor of vanilla Black-

Scholes. However, the calculation also skips an important Black-Scholes parameter called 

discounting. It is done in the following line when using the standard pricing model: 

vanillaPremium = vanillaPremium.mul(underlyingPrice).div(forward); 

 

Since the overridePremium variable is not discounted, the premium will be higher than 

expected, making the short side profit the difference in expected value while the long loses it. 

https://brilliant.org/wiki/black-scholes-merton/


Trust Security  Rysk Beyond - Inventory upgrade
  
  
Recommended mitigation 

Add the discount calculation for flatIV model as well. 

Team response 

Fixed. 

Mitigation review 

Discounting is now done properly in the flatIV pricing model. 

 

TRST-M-3 Valid orders may not be executable due to TOCTOU of option balance 

• Category:  Race-condition flaws 

• Source: AlphaOptionHandler.sol 

• Status: Acknowledged 

Description 

The inventory code upgrade changed createOrder(), so that it will only issue the option series 

if it cannot facilitate the order execution with the existing balance. 

if (series == address(0) || ERC20(series).balanceOf(address(this)) < 

OptionsCompute.convertToDecimals(_amount, OPYN_DECIMALS)) { 

   series = liquidityPool.handlerIssue(_optionSeries); 

} 

 

Note that at execution-time, if the balance is insufficient the handler will write an option. This 

assumes it has already been issued. 

} else { 

   if (order.optionSeries.collateral != collateralAsset) { 

      revert CustomErrors.CollateralAssetInvalid(); 

   } 

   // write the option contract, includes sending the premium from 

the user to the pool, option series should be in e8 

   liquidityPool.handlerWriteOption( 

      order.optionSeries, 

      order.seriesAddress, 

      order.amount, 

      getOptionRegistry(), 

      convertedPrem, 

      0, // delta is not used in the liquidityPool unless the oracle 

implementation is used, so can be set to 0 

      msg.sender 

   ); 

   getPortfolioValuesFeed().updateStores( 

      seriesToStore, 

      int256(order.amount), 

      0, 

      order.seriesAddress 

   ); 

} 

 



Trust Security  Rysk Beyond - Inventory upgrade
  
  
The issue is a TOCTOU (time-of-check, time-of-use) bug regarding the handler's balance. 

Suppose the contract has 100 oTokens. Two orders are created with an amount of 60 oTokens. 

These will not trigger an issue() because the balance check is passed. At this point, both orders 

are executed. Only the first one shall be completed successfully. The second order will trigger 

a handlerWriteOption() call which will fail as the series was not issued. 

Recommended mitigation 

One option is to delay the issue() call to execution-time. Another option is to keep track of 

balance that is already allocated to future executions, and deduct it from the current balance 

when checking new orders. 

Team response 

Acknowledged. 

 

Low severity findings 
 

TRST-L-1 Pricing of options far in the future may be incorrect 

• Category:  Overflow issues 

• Source: BeyondPricer.sol 

• Status: Fixed 

Description 

In _getTenorIndex(), the index calculation is performed as: 

uint unroundedTenorIndex = (((((_expiration - block.timestamp) * 

1e18).sqrt()) * 

   (numberOfTenors - 1)) / maxTenorValue); 

tenorIndex = uint16(unroundedTenorIndex / 1e18); // always floors 

 

If expiration is a number far in the future, uint16() casting may truncate the result and cause 

a calculation error. As of the current configuration, Rysk handles option approval so it remains 

unlikely. However, if option minting becomes decentralized, this would open the attack path. 

The impact would be a significant mispricing of options. 

Recommended mitigation 

Validate that unroundedTenorIndex / 1e18 <= 65535.  

Team response 

Fixed. 

Mitigation review 

Fixed using the suggested mitigation. 

 



Trust Security  Rysk Beyond - Inventory upgrade
  
  

TRST-L-2 Portfolio will miscalculate exposure when AlphaOptionHandler processes 

orders with collateral different from the one set 

• Category:  Logical flaws 

• Source: AlphaOptionHandler.sol 

• Status: Fixed 

Description 

The executeOrder() function in AlphaOptionHandler allows a user to buy or sell options to or 

from the pool. The AlphaPortfolioValuesFeed contract holds the current long and short 

exposure per option series (a tuple that uniquely identifies the underlying, expiry, strike price, 

collateral and other factors). The upgrade made it so that when the handler has sufficient 

oTokens, it will not write new options. 

if (ERC20(order.seriesAddress).balanceOf(address(this)) >= 

convertedAmount) { 

   // transfer otoken 

   SafeTransferLib.safeTransfer(ERC20(order.seriesAddress), 

msg.sender, convertedAmount); 

   // update stores 

   getPortfolioValuesFeed().updateStores( 

      seriesToStore, 

      0, 

      -int256(order.amount), 

      order.seriesAddress 

   ); 

   // adjust variables 

   liquidityPool.adjustVariables( 

      0, 

      convertedPrem, 

      0, 

      true 

   ); 

 

The issue is that the seriesToStore structure is built with the Handler's collateralAsset, rather 

than the one fetched from the order. 

Types.OptionSeries memory seriesToStore = Types.OptionSeries( 

   order.optionSeries.expiration, 

   

uint128(OptionsCompute.convertFromDecimals(order.optionSeries.strike, 

OPYN_DECIMALS)), 

   order.optionSeries.isPut, 

   underlyingAsset, 

   strikeAsset, 

   collateralAsset 

); 

 

If the collateralAsset is different from the optionSeries collateralAsset, the wrong asset will 

be stored in the storesForAddress mapping.  

if (!addressSet.contains(_seriesAddress)) { 

   // maybe store them by expiry instead 

   addressSet.add(_seriesAddress); 

   storesForAddress[_seriesAddress] = OptionStores(_optionSeries, 

shortExposure, longExposure); 



Trust Security  Rysk Beyond - Inventory upgrade
  
  
The collateral will never actually be used in the current iteration of the code. Also, a wrong 

event will be emitted below: 

emit StoresUpdated(_seriesAddress, shortExposure, longExposure, 

_optionSeries); 

 

Recommended mitigation 

Pass the correct collateralAsset when constructing the seriesToStore variable. 

Team response 

Fixed 

Mitigation review 

Fix has been applied correctly. 

 

 

 

 

TRST-L-3 The "flat IV" parameters are not validated to be safe. 

• Category:  Input validation issues 

• Source: BeyondPricer.sol 

• Status: Acknowledged 

Description 

The following functions are introduced for "flat IV" pricing model. 

function setLowDeltaSellOptionFlatIV(uint256 

_lowDeltaSellOptionFlatIV) external { 

   _onlyManager(); 

   emit LowDeltaSellOptionFlatIVChanged(_lowDeltaSellOptionFlatIV, 

lowDeltaSellOptionFlatIV); 

   lowDeltaSellOptionFlatIV = _lowDeltaSellOptionFlatIV; 

} 

function setLowDeltaThreshold(uint256 _lowDeltaThreshold) external { 

   _onlyManager(); 

   emit LowDeltaThresholdChanged(_lowDeltaThreshold, 

lowDeltaThreshold); 

   lowDeltaThreshold = _lowDeltaThreshold; 

} 

 

The functions do not restrict the input to sensible values. They should have a safe upper bound 

to avoid being abused or accidentally set. 

Recommended mitigation 

Choose a safe upper bound for the set IV and low delta thresholds. 

Team response 



Trust Security  Rysk Beyond - Inventory upgrade
  
  
Acknowledged 

 

TRST-L-4 DHV exposure updates do not emit adequate events 

• Category:  Event emission issues 

• Source: AlphaPortfolioValuesFeed.sol 

• Status: Fixed 

Description 

The upgrade adds an option for governance to update the critical netDhvExposure mapping 

of delta exposures. 

function setNetDhvExposures( 

   bytes32[] memory _optionHashes, 

   int256[] memory _netDhvExposures 

) external { 

   _onlyGovernor(); 

   uint256 arrayLength = _optionHashes.length; 

   require(arrayLength == _netDhvExposures.length); 

   for (uint i; i < arrayLength; i++) { 

      if (uint256(_netDhvExposures[i].abs()) > maxNetDhvExposure) 

revert MaxNetDhvExposureExceeded(); 

      emit NetDhvExposureChanged(netDhvExposure[_optionHashes[i]], 

_netDhvExposures[i]); 

      netDhvExposure[_optionHashes[i]] = _netDhvExposures[i]; 

   } 

 

The emitted event will include the new exposure and the overridden exposure value. 

However, it will not contain the appropriate optionHashes entry. Therefore, the events do 

not provide adequate data transparency. 

Recommended mitigation 

Emit the _optionHashes[i] parameter. 

Team response 

Fixed. 

Mitigation review 

Fixed correctly using a new indexed event parameter. 

 

TRST-L-5 OptionRegistry could emit a wrong event when issuing tokens 

• Category:  Event emission issues 

• Source: OptionRegistry.sol 

• Status: Fixed 

Description 

The OptionRegistry's issue() function emits an event. 

emit OptionTokenCreated(series); 



Trust Security  Rysk Beyond - Inventory upgrade
  
  
 

However, the event is misleading. An option token will only be created if it had not existed 

prior to the call. 

// check for an opyn oToken if it doesn't exist deploy it 

address series = OpynInteractions.getOrDeployOtoken( 

   addressBook.getOtokenFactory(), 

   optionSeries.collateral, 

   optionSeries.underlying, 

   optionSeries.strikeAsset, 

   formattedStrike, 

   optionSeries.expiration, 

   optionSeries.isPut 

); 

 

Recommended mitigation 

Check if the series has existed prior to the issue() call. 

Team response 

Fixed. 

Mitigation review 

An early return ensures the event will only be emitted when the oToken is created. 

 

 

  



Trust Security  Rysk Beyond - Inventory upgrade
  
  

Additional recommendations 
 

Rename functions 
 

The function below is now used to migrate oTokens from the exchange to the handler for OTC 

orders.  

/** 

 * @notice migrate otokens held by this address to a new option 

exchange 

 * @param newOptionExchange the option exchange to migrate to 

 * @param otokens the otoken addresses to transfer 

 */ 

function migrateOtokens(address newOptionExchange, address[] memory 

otokens) external { 

 

We recommend updating the variable name and documented to reflect that migration can 

used to transfer oTokens both to new exchanges and to handlers. 

 

Add safety validations to token migration 
 

The Rysk multisig can migrate tokens through the described function. 

function migrateOtokens(address optionExchange, address[] memory 

otokens) external { 

   _onlyGovernor(); 

   uint256 len = otokens.length; 

   for (uint256 i = 0; i < len; i++) { 

      if (OtokenInterface(otokens[i]).underlyingAsset() != 

underlyingAsset) { 

         revert CustomErrors.NonWhitelistedOtoken(); 

      } 

      uint256 balance = ERC20(otokens[i]).balanceOf(address(this)); 

      SafeTransferLib.safeTransfer(ERC20(otokens[i]), optionExchange, 

balance); 

   } 

} 

 

Note that the function makes sure the underlyingAsset is in line with the contract-specific 

asset. However, it should also check that the new optionExchange's underlyingAsset is the 

same as the oToken underlyingAsset. This would protect against potential costly mistakes. 

 

EphemeralDelta should be tracked correctly 
 

Finding L-2 described a location in code where delta is miscalculated. It is also ignored in the 

pre-upgrade code below: 



Trust Security  Rysk Beyond - Inventory upgrade
  
  
liquidityPool.handlerWriteOption( 

   order.optionSeries, 

   order.seriesAddress, 

   order.amount, 

   getOptionRegistry(), 

   convertedPrem, 

   0, // delta is not used in the liquidityPool unless the oracle 

implementation is used, so can be set to 0 

   msg.sender 

); 

 

It is generally not recommended to store state that cannot be relied on. It would be best to 

either remove the variable, or correct all usages of it to keep it accurate. An incorrectly-

tracked integer variable may cause unexpected overflows, impairing the functionality of the 

contract. 

 

Improve documentation 
 

In the introduction to tenor-based parameters here, it describes: 

"Function initializeTenorParams() will be added, giving governance the power to overhaul 

all tenors at once. It will be called in the constructor." 

In fact, the function is not called in the constructor. It is called separately.  

 

Optimize gas through early exit 
 

In _getSlippageMultiplier(), if gradient is zero there's nothing to calculate. 

 

if (slippageGradient == 0) { 

   slippageMultiplier = ONE_SCALE; 

   return slippageMultiplier; 

} 

 

However, it still performs the interpolation algorithm, which is unnecessary. 

uint256 deltaBandIndex = (uint256(_optionDelta.abs()) * 100) / 

deltaBandWidth; 

(uint16 tenorIndex, int256 remainder) = 

_getTenorIndex(_optionSeries.expiration); 

if (_optionDelta < 0) { 

   modifiedSlippageGradient = slippageGradient.mul( 

      _interpolateSlippageGradient(tenorIndex, remainder, true, 

deltaBandIndex) 

   ); 

} else { 

   modifiedSlippageGradient = slippageGradient.mul( 

      _interpolateSlippageGradient(tenorIndex, remainder, false, 

deltaBandIndex) 

https://rysk.notion.site/Tenor-based-linear-interpolation-solution-6103c8ec4a4243d0b3685a14ff6137bb


Trust Security  Rysk Beyond - Inventory upgrade
  
  
   ); 

} 

if (slippageGradient == 0) { 

   slippageMultiplier = ONE_SCALE; 

   return slippageMultiplier; 

} 

 

Consider moving the check to the top of the function. 

 

Calculating length outside of loop saves gas 
 

There are several instances in the code where the BeyondPricer loops over arrays, while the 

condition compares against the dynamically-fetched length value. 

 

for (uint256 j = 0; j < 

_tenorPricingParams[i].callSlippageGradientMultipliers.length; j++) { 

   // arrays must be same length so can check all in same loop 

   // ensure no multiplier is less than 1 due to human error. 

   if ( 

 

for (uint256 i = 0; i < _callSlippageGradientMultipliers.length; i++) 

{ 

   // arrays must be same length so can check both in same loop 

   // ensure no multiplier is less than 1 due to human error. 

   if ( 

 

for (uint256 i = 0; i < _callSpreadCollateralMultipliers.length; i++) 

{ 

   // arrays must be same length so can check both in same loop 

   // ensure no multiplier is less than 1 due to human error. 

 

It is highly recommended to cache the length in a local variable, as it saves an MLOAD 

instruction for each loop iteration. 

 

BeyondPricer configuration is fragile 
 

There are various setters for parameters that affect option pricing in BeyondPricer. The 

configuration is considered live at all times. If the manager intends to change several of the 

parameters are once, like the lowDeltaSellOptionFlatIV and lowDeltaThreshold, users can 

receive an unintended parameter set between configuration changes. For this reason, it is 

advisable to have a pause switch for the Pricer.  Moreover, the configuration can easily 

confuse between an unset value and zero. Only in the first case it is desirable to revert pricing. 

A lowDeltaSellOptionFlatIV of zero will be caught in the OptionsCompute library. 

 



Trust Security  Rysk Beyond - Inventory upgrade
  
  

Centralization risks 
 

Migration functions can be abused 
 

The migrateOtokens() function in OptionExchange and AlphaOptionHandler are naturally a 

centralization concern, as they could be used to exfiltrate tokens to arbitrary addresses. This 

would diminish the $-value of the LP.  

 

Pricing parameters can be abused 
 

Pricing is done at the multisig's sole discretion. In theory, pricing could be manipulated to 

benefit the LP, or conversely the users, at different points in time. Users are urged to be aware 

of pricing changes and see that they are satisfied with the parameter set offered. 

 

 

 

 

 

 

 


		2023-06-26T14:17:16+0200
	Trust




