
DEDAUB.COM

Rysk
Smart Contract Security Assessment

February 10, 2023

DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform a security audit of part of the Rysk protocol. The
audit was based on commit 7613d8f of the dynamic-hedging repository.

Thee auditors worked on the codebase for 3 weeks on the following contracts:

dynamic-hedging
├── packages/

├── contracts/
├── contracts/

├── libraries/
│ ├── CombinedActions.sol

├── RyskActions.sol
├── SABR.sol

├── BeyondPricer.sol
├── OptionCatalogue.sol
├── OptionExchange.sol
├── OptionRegistry.sol
├── VolatilityFeed.sol

OVERVIEW OF THE PROTOCOL

The Rysk protocol allows liquidity providers to deposit liquidity into a liquidity pool. This
liquidity is used to provide the collateral required to write put or call options, which can
be sold to users of the protocol. In return the pool obtains a premium, which is owned by
the liquidity providers, and the protocol obtains a fee for the transaction.

Users of the protocol can also sell the options which have been underwri�en back to the
liquidity pool. In addition options minted on Opyn which have been whitelisted by Rysk
may also be sold to the pool.

1

https://github.com/rysk-finance/dynamic-hedging/

DEDAUB.COM

The pool tries to o�er the right incentives to users to buy its options, or to sell options to
it, in order to control its risk exposure. In addition, it is able to hedge its current portfolio
through the use of perpetual forward contracts or spot marked operations.

Users of the protocol should be aware of the fact that the hedging operations mentioned
above are orchestrated and carried out by a number of o�-chain bots controlled by the
protocol’s quant team, while the hedging strategy used is a proprietary one.

DESCRIPTION OF CONTRACTS IN SCOPE

The BeyondPricer contract is responsible for pricing options contracts based on an
adjusted Black-Scholes model which obtains its implied volatility from a SABR model
(the parameters of this model are provided by bots controlled by the Rysk team). The
OptionsCatalogue contract is responsible for whitelisting the options allowed to interact
with the Rysk protocol. The OptionExchange contract is the entrypoint for users wishing
to interact with the protocol, while the OptionRegistry contract is used by the
OptionExchange to control all the interactions required with a variant of the Opyn
protocol deployed by Rysk.

SETTING & CAVEATS

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than the regular use of the protocol. Functional
correctness (i.e. issues in "regular use") is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e. full-detail) speci�cations of
what is the expected, correct behavior. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
speci�cation. Functional correctness relative to low-level calculations (including units,
scaling and quantities returned from external protocols) is generally most e�ectively
done through thorough testing rather than human auditing.

2

DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES
This section details issues a�ecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or di�iculty in exploitation:

Category Description

CRITICAL
Can be pro�tably exploited by any knowledgeable third-party a�acker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH
Third-party a�ackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:
● User or system funds can be lost when third-party systems
misbehave.

● DoS, under speci�c conditions.
● Part of the functionality becomes unusable due to a programming
error.

LOW

Examples:
● Breaking important system invariants but without apparent
consequences.

● Buggy functionality for trusted users where a workaround exists.
● Security issues whichmaymanifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

3

DEDAUB.COM

CRITICAL SEVERITY:

[NO CRITICAL SEVERITY ISSUES]

HIGH SEVERITY:

ID Description STATUS

H1 OptionExchange::redeem() is susceptible to front-running RESOLVED

The OptionExchange contract’s redeem() function calls _swapExactInputSingle()
with minimum output set to 0, making it susceptible to a front-running/sandwich
a�ack when collateral is being liquidated. It is recommended that a minimum
representing an acceptable loss on the swap is used instead.

// OptionExchange::redeem
function redeem(address[] memory _series) external {
_onlyManager();
uint256 adLength = _series.length;
for (uint256 i; i < adLength; i++) {
// ... Dedaub: Code omi�ed for brevity.

if (otokenCollateralAsset == collateralAsset) {
// ... Dedaub: Code omi�ed for brevity.

} else {
// Dedaub: Minimum output set to 0. Susceptible to sandwich a�acks.
uint256 redeemableCollateral =
_swapExactInputSingle(redeemAmount, 0, otokenCollateralAsset);

SafeTransferLib.safeTransfer(
ERC20(collateralAsset),address(liquidityPool),redeemableCollateral

);
emit RedemptionSent(
redeemableCollateral, collateralAsset, address(liquidityPool)

);

4

DEDAUB.COM

}
}

}

H2 VolatilityFeed updates are susceptible to front-running DISMISSED

The VolatilityFeed contract uses the SABRmodel to compute the implied volatility of an
option series. This model uses a number of parameters which are regularly updated by
a keeper through the updateSabrParameters() function. It is possible for an a�acker
to front-run this update, transact with the LiquidityPool at the old price and then
transact back with the LiquidityPool at the new price (computed in advance) if the
di�erence is pro�table.

The Rysk team has indicated that trading will be paused for a few blocks to allow for
parameter updates to happen and to e�ectively prevent this situation.

MEDIUM SEVERITY:

ID Description STATUS

M1 No staleness check on the volatility feed ACKNOWLEDGED

The function quoteOptionPrice of the BeyondPricer contract retrieves the implied
volatility from the function VolatilityFeed::getImpliedVolatility(). However,
the returned value is not accompanied by a timestamp that can be used by the
quoteOptionPrice() function to determine whether the value is stale or not. Since
the implied volatility returned is a�ected by a keeper, which is responsible for updating
the parameters of the underlying SABR model, it is recommended that staleness
checks are implemented in order to avoid providing wrong implied volatility values.

5

DEDAUB.COM

LOW SEVERITY:

ID Description STATUS

L1
Inconsistent use of price feeds for the price of the
underlying

DISMISSED

The BeyondPrice contract gets the price of the underlying token via the function
_getUnderlyingPrice(), which consults a Chainlink price feed for the price.

// BeyondPrice::_getUnderlyingPrice
function _getUnderlyingPrice(address underlying, address _strikeAsset)
internal view returns (uint256)

{
return PriceFeed(protocol.priceFeed()).
getNormalizedRate(underlying, _strikeAsset);

}

However, when trying to obtain the same price in the function
_getCollateralRequirements(), the addressBook is used to get the price feed from
an Oracle implementing the IOracle interface.

// BeyondPrice::_getCollateralRequirements
function getCollateralRequirements(
Types.OptionSeries memory _optionSeries, uint256 _amount

) internal view returns (uint256) {
IMarginCalculator marginCalc =
IMarginCalculator(addressBook.getMarginCalculator());

return
marginCalc.getNakedMarginRequired(

6

DEDAUB.COM

_optionSeries.underlying,
_optionSeries.strikeAsset,
_optionSeries.collateral,
_amount / SCALE_FROM,
_optionSeries.strike / SCALE_FROM, // assumes in e18
IOracle(addressBook.getOracle()).getPrice(_optionSeries.underlying),
_optionSeries.expiration,
18, // always have the value return in e18
_optionSeries.isPut

);
}

The same addressBook technique is used in the getCollateral() function of the
OptionRegistry contract and in the checkVaultHealth() function of the Option
registry contract.

It is recommended that this is refactored to use the Chainlink feed in order to avoid a
situation where di�erent prices for the underlying are obtained by di�erent parts of the
code.

The Rysk team intends to keep the price close to what the Opyn system would quote,
thus using the Opyn chainlink oracle is actually correct as it represents the actual
situation that would occur for these given quotes

L2
Multiple uses of div before mul in OptionExchange’s
_handleDHVBuyback() function

RESOLVED

In the OptionExchange contract’s _handleDHVBuyback() function, a division is used
before a multiplication operation at lines 925 and 932. It is recommended to use
multiplication prior to division operations to avoid a possible loss of precision in the
calculation. Alternatively, the mulDiv function of the PRBMath library could be used.

7

DEDAUB.COM

CENTRALIZATION ISSUES:

It is often desirable for DeFi protocols to assume no trust in a central authority, including
the protocol’s owner. Even if the owner is reputable, users are more likely to engage with
a protocol that guarantees no catastrophic failure even in the case the owner gets
hacked/compromised. We list issues of this kind below. (These issues should be
considered in the context of usage/deployment, as they are not uncommon. Several
high-pro�le, high-value protocols have signi�cant centralization threats.)

ID Description STATUS

N1 Centralized Implied Volatility Updates ACKNOWLEDGED

The implied volatility used by the BeyondPricer contract to price options is determined
by the SABRmodel. However, the SABRmodel is a function of several parameters set by
bots controlled by the Rysk team. This means that the Rysk team has the ability to
a�ect option prices through the control of these parameters.

The Rysk team has acknowledged the issue and has stated that the decentralization of
the implied volatility computation is not currently feasible but will be part of their
progressive decentralization e�orts.

8

DEDAUB.COM

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly a�ect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 Possible reentrancy in OptionRegistry::redeem() ACKNOWLEDGED

The OptionRegistry’s redeem() function is not access controlled and calls the
OpynInteractions library contract’s redeem() function, which interacts with the
GammaController and the option and collateral tokens. Dedaub’s static analysis tools
warned about a potential reentrancy risk. Our manual inspection identi�ed no such
immediate risk, but as the tokens supported are not strictly de�ned and a future version
of the code could potentially make such an a�ack possible, it is advisable to add a
reentrancy guard around OptionRegistry’s redeem() function.

A2 Minor optimisation in OptionRegistry’s open() function ACKNOWLEDGED

The OptionRegistry::open() function performs the assignment vaultIds[series] =
vaultId_ on line 271. But this can be moved into the if block starting at line 255, since
the vaultId_ only changes value if this if block is executed.

// OpenRegistry::open
function open(
address _series,
uint256 amount,
uint256 collateralAmount

) external returns (bool, uint256) {
_isLiquidityPool();
// make sure the options are ok to open
Types.OptionSeries memory series = seriesInfo[_series];
// assumes strike in e8
if (series.expiration <= block.timestamp) {

9

DEDAUB.COM

revert AlreadyExpired();
}
// ... Dedaub: Code omi�ed for brevity.
if (vaultId_ == 0) {
vaultId_ = (controller.getAccountVaultCounter(address(this))) + 1;
vaultCount++;

}
// ... Dedaub: Code omi�ed for brevity.
// Dedaub: Below assignment can bemoved inside the above block.
vaultIds[_series] = vaultId_;
// returns in collateral decimals
return (true, collateralAmount);

}

A3 Misleading comment in OptionExchange’s
_swapExactInputSingle() function

RESOLVED

The OptionExchange’s _swapExactInputSingle() function de�nition is annotated
with several misleading comments. For instance, it mentions that _amountIn has to be
in WETH when it can support any collateral token. It also mentions that _assetIn is the
stablecoin that is bought, when it is in fact the collateral that is swapped. The
description of the function, which reads “function to sell exact amount of WETH to
decrease delta” is incorrect.

// OptionExchange::_swapExactInputSingle

/** @notice function to sell exact amount of wETH to decrease delta

* @param _amountIn the exact amount of wETH to sell

* @param _amountOutMinimum the min amount of stablecoin willing to

receive. Slippage limit.

* @param _assetIn the stablecoin to buy

* @return the amount of usdc received

*/

function _swapExactInputSingle(

10

DEDAUB.COM

uint256 _amountIn,

uint256 _amountOutMinimum,

address _assetIn) internal returns (uint256) {

// ... Dedaub: Code omi�ed for brevity.
}

A4 Misleading comment in BeyondPricer’s
_getSlippageMultiplier() function

RESOLVED

The division of the _amount by 2, mentioned in the code comment, does not appear in
the code. It appears that this comment corresponds to a previous version of the
codebase and it should be removed.

//BeyondPricer::_getSlippageMultiplier
function _getSlippageMultiplier(
uint256 _amount,
int256 _optionDelta,
int256 _netDhvExposure,
bool _isSell

) internal view returns (uint256 slippageMultiplier) {
// divide _amount by 2 to obtain the average exposure throughout the tx.
// Dedaub: The above comment is not relevant any more.
// ... Dedaub: Code omi�ed for brevity.

}

A5 SABR library’s lognormalVol() can in principle return
negative values

ACKNOWLEDGED

The formula of the SABR model that is responsible for computing the implied volatility
(h�ps://web.math.ku.dk/~rolf/SABR.pdf formula (2.17a)) is an approximate one. It is
not clear to us if this value will always be non-negative as it should be. For example,

11

https://web.math.ku.dk/~rolf/SABR.pdf

DEDAUB.COM

for absolute values of ρ close to 1 and large values of v, the last term of this formula,
and probably the whole value of the implied volatility will be negative.
The execution of VolatilityFeed::getImpliedVolatility will revert if the value
returned by lognormalVol() is non-negative, to protect the protocol from using this
absurd value. Nevertheless, if this keeps happening for a while, the protocol will be
unable to price the options and therefore will be unable to work.

This issue could be avoided either by a careful choice of the SABR parameters by the
protocol’s keepers or by using an alternative volatility feed in case this happens.

A6 Missing check in BeyondPricer’s quoteOptionprice() RESOLVED

In BeyondPricer::quoteOptionPrice() a check that _optionseries.expiration
>= block.timestamp is missing. If the function is called to price an option series with
a past expiration date, it will return an absurd result. We suggest adding a check that
would revert the execution with an appropriate message in case the condition is not
satis�ed.

A7 OptionExchange::_checkHash is de�ned as public even
though its name suggests otherwise

RESOLVED

Function OptionExchange::_checkHash, which returns if an option series is approved
or not, is de�ned as public. However, the starting underscore in “_checkHash” implies
that this functionality should not be exposed externally (via the public modi�er)
creating an inconsistency, even though it is probably useful/necessary to the users of
the protocol.

A8 OptionExchange::_buyOption returns an incorrect value RESOLVED

Whenever a user wants to buy an amount of options, �rst it is checked if the long
exposure of the protocol to this option series is positive. If this is the case, then the
protocol �rst sells the options it holds, to decrease its long exposure, and if they are not

12

DEDAUB.COM

enough, then the Liquidity pool writes extra options to reach the amount requested by
the user. The problem is that the _buyOption function, in the case the Liquidity pool is
called to write these extra options, returns only this extra amount, and not the total
amount sold to the user.

A9 Consistency of compiler versions RESOLVED

The code of the BeyondPricer, OptionExchange and OptionCatalogue contracts is
compiled with the floating pragma >=0.8.0, and the OptionRegistry contract is
compiled with the floating pragma >=0.8.9. It is recommended that the compiler
version is �xed to a speci�c version and that this is kept consistent amongst source
�les.

A10 Compiler bugs ACKNOWLEDGED

The code of the BeyondPricer, OptionExchange and OptionCatalogue contracts is
compiled with the floating pragma >=0.8.0, and the OptionRegistry contract is
compiled with the floating pragma >=0.8.9. Versions 0.8.0 and 0.8.9 in particular, have
some known bugs, which we do not believe a�ect the correctness of the contracts.

13

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1451

DEDAUB.COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a su�icient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub o�ers signi�cant security expertise combined with cu�ing-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and �nancial
mathematics.

14

