
DEDAUB.COM

Rysk
Smart Contract Security Assessment

18.06.2022

DEDAUB.COM

ABSTRACT
Dedaub was commissioned to audit the Rysk protocol, expected to be deployed on
Arbitrum. The Rysk protocol is a decentralized options exchange which aims to achieve
sustainable yield using dynamic delta hedging. This audit report covers commit hash
609da7bfdb1289e150a872afeea92e483a0e7982. Two auditors and a mathematician
worked over the codebase over 4.5 weeks. PerpHedgingReactor.sol was audited
separately and covers commit hash 9d3174fc6f68eec996e71d500ad00a0aa7ab6aca.

The codebase appears to be well-tested and covers many corner cases. Detailed
documentation was provided. The team auditing this protocol was already
knowledgeable in decentralized options protocols and to some extent delta hedging of
options portfolios. The audit did not include the forked Opyn Gamma protocol, standard
libraries and offchain oracles. Although a number of issues were found as part of this
audit, many of these issues can be easily resolved by the protocol team.

Security Opinion
The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than regular use of the protocol. Functional
correctness (i.e., issues in "regular use") was a secondary consideration, however
intensive efforts were made to check the correct application of the mathematical
formulae in the reviewed code. Functional correctness relative to low-level calculations
(including units, scaling, quantities returned from external protocols) is generally most
effectively done through thorough testing rather than human auditing. This scope of the
audit also included crypto-economic considerations. A number of checks have been
carried out, however the crypto-economic effectiveness of this specific design is novel.
Therefore, the financial viability of this protocol in real market conditions cannot be fully
established. In terms of protocol completion, the protocol appears to be ready for
staging.

01

DEDAUB.COM

In terms of architecture, Dedaub notes that there are several design decisions that
ensure the economic security of the protocol. These include multiple delta hedging
reactors, and the various incentives in the computation of options prices.

There are two kinds of Rysk users - liquidity providers and options buyers / market
makers. Users of the Rysk protocol can become liquidity providers by depositing
collateral into the Liquidity Pool. This collateral is then used to collateralize/short the
options that the protocol issues and sells. When an option is sold, the premium is
distributed to the depositors proportionally to their shares. This yield comes, of course, at
a risk. In essence, the liquidity providers are exposed to the option. If the option expires
in-the-money they will lose part of their deposit. The purpose of the Rysk protocol is to
accomplish a portfolio uncorrelated to the market of the underlying crypto assets.

The correlation of the option price and the underlying asset is measured using
, where is the premium price of the option and is the price of the

underlying asset. A total portfolio Delta (sum of the deltas of all the options for the same
underlying asset) equal to 0 means that the portfolio is uncorrelated to the market.
There are two issues to consider at this point. First, regarding the exact computation of
Delta and, second, how the protocol achieves a delta neutral state. Rysk takes care of
both of these issues using advanced mathematical methods and implementing
investment strategies used for a long time in TradFi, which we will briefly describe in the
following.

Given the strike price, the expiration date and the price of the underlying asset (this last
price is retrieved by oracles) the premium is computed using the Black-Scholes
model. However,this is not the option’s final price. A utilization premium is added and a
delta skew is applied in order to achieve zero delta for the portfolio. The utilization
premium equals to , where utilizationFactor is computed using the
formula:

, if

02

https://www.codecogs.com/eqnedit.php?latex=Delta%3D%20%5Cpartial%20V%2F%20%5Cpartial%20S#0
https://www.codecogs.com/eqnedit.php?latex=V#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=V#0
https://www.codecogs.com/eqnedit.php?latex=utilizationFactor%5Ccdot%20V#0
https://www.codecogs.com/eqnedit.php?latex=utilizationFactor%3Dm_1%5Ccdot%20x#0
https://www.codecogs.com/eqnedit.php?latex=x%3Cthreshold#0

DEDAUB.COM

, if

where and threshold are constants to be decided by governance and x is the
Liquidity Pool utilization. Constant will be significantly larger than , i.e. when the
utilization of the Liquidity Pool is high, the protocol prices the options more expensively,
to control the sales of options and keep the users safe from liquidation.

The last step in the computation of an option’s price is the application of the delta skew.
The normalized delta is computed (average of the delta before and after the transaction
divided by the total value of the portfolio) and

, where maxDiscount is a
constant to be decided by governance. The amount
is added to or subtracted by the utilization price accordingly if the transaction increases
or decreases the value of delta, i.e. the protocol prices higher options which tend to
increase delta, therefore incentivizes users to buy options leading towards a
delta-neutral state.

The protocol also makes use of hedging reactors to achieve a delta-neutral state. These
reactors are contracts which make use of other protocols to open/close positions that
will shift the portfolio closer to a delta-neutral state. Collateral from the liquidity pool is
used to cover these positions.
Currently two hedging reactors have been implemented, UniswapV3HedgingReactor and
PerpHedgingReactor, and the protocol has been designed such that new hedging
reactors can easily be added or changed over time.

03

https://www.codecogs.com/eqnedit.php?latex=utilizationFactor%3Dm_2%5Ccdot%20x%2Bc#0
https://www.codecogs.com/eqnedit.php?latex=x%3Ethreshold#0
https://www.codecogs.com/eqnedit.php?latex=m_1%2Cm_2%2Cc#0
https://www.codecogs.com/eqnedit.php?latex=m_2#0
https://www.codecogs.com/eqnedit.php?latex=m_1#0
https://www.codecogs.com/eqnedit.php?latex=deltaSkewFactor%3Dmin(normalizedDelta%2CmaxDiscount)#0
https://www.codecogs.com/eqnedit.php?latex=deltaSkewFactor%5Ccdot%20utilizationPrice#0

DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES
This section details issues that affect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL Can be profitably exploited by any knowledgeable third party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH Third party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM Examples:
-User or system funds can be lost when third party systems misbehave.
-DoS, under specific conditions.
-Part of the functionality becomes unusable due to programming error.

LOW Examples:
-Breaking important system invariants, but without apparent
consequences.
-Buggy functionality for trusted users where a workaround exists.
-Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

04

DEDAUB.COM

CRITICAL SEVERITY:

[No critical severity issues]

HIGH SEVERITY:

ID Description STATUS

H1 PortfolioValuesFeed::setLiquidityPool is callable by
anyone

FIXED

Method setLiquidityPool of the PortfolioValuesFeed contract should be callable only by
the governor of the protocol. However, this is not enforced in code as there is no call to
the _onlyGovernor access control method. To be fully precise, there is a reference to
the _onlyGovernor method but not a call to it, as can be seen below:

function setLiquidityPool(address _liquidityPool) external {
_onlyGovernor; // Dedaub (bug): _onlyGovernor();
liquidityPool = ILiquidityPool(_liquidityPool);

}

This was obviously an omission but still one that an attacker could exploit to mess up
the protocol’s state. Specifically, by pointing the liquidityPool storage variable to a
dummy LiquidityPool contract there would be no call to the resetEphemeralValues
method of the original LiquidityPool when PortfolioValuesFeed::fulfill would be
called by the oracle, leaving the ephemeral values of the LiquidityPool “dirty”.

The protocol can be exploited in the following scenario, given the following
preconditions:

1) ephemeralDelta < 0
2) The portfolio delta computed by the offchain oracle, passed through fulfill is

negative.

05

DEDAUB.COM

By skipping the reset of ephemeralDelta, the value reported by getPortofolioDelta
(delta+ephemeralDelta+externalDelta) is off by ephemeralDelta, which is
actually beneficial to the attacker as they get the option cheaper.

H2 Incorrect calculation of price differences FIXED

OptionsCompute::calculatePercentageDifference is incorrect. It computes a
ratio, and where this ratio is used (OptionsCompute::validatePortfolioValues), it
expects a value that characterizes the price differences between assets (the higher
the difference, the higher the value). As can be seen in the below code snippet of the
validatePortfolioValues method, if the priceDelta variable holds the ratio instead of the
percentage difference of the asset prices then the computation will revert with a
PriceDeltaExceedsThreshold error in scenarios where the actual price difference is
small and execute normally when there is significant difference in prices, essentially
working the opposite way from what would be expected.

function validatePortfolioValues(

uint256 spotPrice,

Types.PortfolioValues memory portfolioValues,

uint256 maxTimeDeviationThreshold,

uint256 maxPriceDeviationThreshold

) public view {

uint256 timeDelta = block.timestamp - portfolioValues.timestamp;

// If too much time has passed we want to prevent a possible oracle attack

if (timeDelta > maxTimeDeviationThreshold) {

revert CustomErrors.TimeDeltaExceedsThreshold(timeDelta);

}

uint256 priceDelta = calculatePercentageDifference(spotPrice,

portfolioValues.spotPrice);

// If price has deviated too much we want to prevent a possible oracle attack

if (priceDelta > maxPriceDeviationThreshold) {

revert CustomErrors.PriceDeltaExceedsThreshold(priceDelta);

}

}

As such, the protocol would not be able to operate under normal/expected conditions.

06

DEDAUB.COM

MEDIUM SEVERITY:

ID Description STATUS

M1 LINK funds of PortfolioValuesFeed can be depleted FIXED

An attacker can waste all the LINK tokens deposited into the PortfolioValuesFeed
contract by repeatedly calling method requestPortfolioData, as there is no limit on
how often or under which protocol conditions it could be called.

M2 LINK might not be retrievable from PortfolioValuesFeed FIXED

The constructor of PortfolioValuesFeed is provided the address of the LINK token
contract via the _link parameter.

constructor(

address _oracle,

bytes32 _jobId,

uint256 _fee,

address _link,

address _authority

) AccessControl(IAuthority(_authority)) {

if (_link == address(0)) {

setPublicChainlinkToken();

} else {

setChainlinkToken(_link);

}

oracle = _oracle;

jobId = _jobId;

fee = _fee;

link = _link;

}

When _link is set to the 0 address, the setPublicChainlinkToken method is called to
set the respective storage variable of the parent contract (ChainlinkClient).
Nevertheless, the link storage variable of the PortfolioValuesFeed contract is set to 0,

07

DEDAUB.COM

while there is no method to update it later. In such a scenario (link is set to 0), it
becomes impossible to retrieve any LINK deposited into the contract via the
withdrawLink method.

M3 PortfolioValuesFeed::fulfill can be sandwiched DISMISSED

PortfolioValues::fulfill can be sandwiched using MEV techniques or simply by
predicting the request/fulfill delay and replicating the oracle’s algorithm offline.

Scenario 1 (decentralized chains):
1) LiquidityPool has relatively high EphemeralDelta and stale portfolio greeks
2) Attacker detects calls to fulfill frontruns by buying a call or put option

(depending on option pricing after fulfill).
3) Attacker immediately sells back the option after fulfill is executed.

Scenario 2 is the same as scenario 1, but in this case the attacker estimates the delay
between calling LiquidityPool::requestPortfolioData and the oracle calling
LiquidityPool::fulfill. In addition the attacker has to replicate the options
pricing algorithm offline (the details on public whitepapers are probably enough to
approximately replicate this) and perform the attack over multiple transactions.

M4 Liquidity providers may experience a “bank run” situation ACKNOWLEDGED

According to Rysk:
Liquidity Providers are users who will provide liquidity to the vaults in the interest
of generating yield.

When users buy options from Rysk part of the total liquidity gets locked to back the
written/sold options up to their expiration. At the same time, extra liquidity is used as a
buffer for margin requirements of the options vault. If a liquidity provider decides to
withdraw their funds, they can do so as long as the amount is less than the total
provided liquidity minus the liquidity backing the options and the buffer.

08

DEDAUB.COM

Bank run situations in a high liquidity utilization scenario might leave some users
unable to retrieve their deposited liquidity in whole, as the protocol needs to maintain
certain liquidity to collateralize the written/sold options as described above.

[The issue was acknowledged and addressed in a newer version of the protocol by the
introduction of a partition system that ensures a user’s withdrawal request will be
honored when the associated epoch is processed. The specific version of the protocol
was not part of this audit.]

M5 Delta skew calculation is gameable DISMISSED

The method with which delta skew is calculated is exploitable. Delta skew is a function
that incentivizes or disincentivizes the price of an option based on whether the
transaction causes the pool to converge to neutrality. Unfortunately the skew does not
take into consideration the net asset value (NAV) of the pool after the transaction
succeeds. The following scenario demonstrates a typical attack.

Scenario 1, selling options back to the system. Preconditions:
1. Alice wants to sell her options back to the pool.
2. The liabilities of her options are a significant part of the NAV of the pool.
3. Alice is a whitelisted seller
4. The transaction will cause the pool to increase its absolute delta

In this scenario, the normalized delta is computed by using the NAV in the
denominator, which is higher than after the transaction succeeds. Therefore, Alice is
receiving an unfair discount when increasing the portfolio delta.

Scenario 2, buying options. Preconditions:
1. Alice wants to buy an option

09

DEDAUB.COM

2. The increase in liabilities after minting the options would be a significant part of
the NAV of the pool.

3. The transaction will cause the pool to decrease its absolute delta

In this scenario, Alice receives a discount when buying the option. However, since this is
calculated on the current NAV, it will be higher than the actual contribution of delta
shifting considering the NAV of the pool after the transaction.

These issues can be confirmed by replicating each scenario using multiple smaller
transactions, vs. larger transactions, and observing the delta skew.

[The issue has been dismissed by the developers of the protocol as the delta skew
calculation will not be employed in the Rysk Alpha launch codebase, i.e., the
respective code has been removed according to the specification of the new protocol
version.]

M6 amountOutMinimum always set to 0 when performing swaps FIXED

In UniswapV3HedgingReactor::hedgeDelta, amountOutMinimum is always set to 0.
This value is used in UniswapV3HedgingReactor::_swapExactInputSingle when
selling wETH in exchange for USDC.

If the protocol was deployed in Ethereum, an attacker could manipulate the price on
the Uniswap pool prior to this call to steal all of the collateral being hedged by
sandwiching the reactor’s swap since there is currently no lower limit for the amount of
USDC returned to the reactor. However, Arbitrum, the L2 solution where the protocol is
going to be deployed, uses a FIFO sequencer instead of a public mempool, which
drastically reduces the chances of such attacks. At the same time, Arbitrum is working
with Chainlink on creating a decentralized transaction ordering solution that will
minimize MEV. Nevertheless, as Arbitrum is still evolving and no solution is set in stone,
it is suggested to use a price value for ETH given by the user (LiquidityPool), which
could also be computed using an Oracle.

010

https://blog.chain.link/arbitrum-and-chainlink-fair-sequencing-services/

DEDAUB.COM

011

DEDAUB.COM

LOW SEVERITY:

ID Description STATUS

L1 Removing a non-empty hedging reactor FIXED

LiqiudityPool::removeHedgingReactorAddress does not check whether a
hedging reactor contains any funds before removing it. Once a hedging reactor is
removed from the liquidity pool, any remaining funds allocated to it will not be
accessible, as UniswapV3HedgingReactor::withdraw can only be called by the
parent LiquidityPool.

Currently, the only way to access these funds is to add the hedging reactor back to the
LiquidityPool, withdraw all the funds from it, and then remove it again.
A better solution would be to close any positions held by the reactor, and then
withdraw all funds as part of LiqiudityPool::removeHedgingReactorAddress.

L2 Inaccurate margin requirements risk calculation DISMISSED

This issue details small issues related to the appropriate pricing of collateral utilization
due to a combination of (1) Vault health checks when buying options, (2) Dynamic
naked margin requirements in Opyn, and (3) the “impedance mismatch” between
these.

Example 1: Not pricing margin requirement “upper bound” transition time
In Opyn Gamma, the margin requirements change when the time to expiry crosses a
predefined threshold.

For instance, if an option has 2 weeks until expiry, for each day that passes the margin
requirements on Opyn in this example are 5% less each day (working below).

012

https://library.dedaub.com/transactions/Ethereum/D364A872CF4129B06E4D3AB614C9DC855B4CB3DF37EC4D6983C9C7CE8B67CF69
https://library.dedaub.com/transactions/Ethereum/D364A872CF4129B06E4D3AB614C9DC855B4CB3DF37EC4D6983C9C7CE8B67CF69

DEDAUB.COM

Margin upper bound value (2 week expiration): 2.7e26
Margin upper bound value (1 week expiration): 1.9e26
Number of days in a week: 7

Note that: 2.7e26 * 0.957 ≈ 1.9e26

However, the pricing of an option only considers the fundamental pricing, collateral
utilization, and delta skew. If the time to the next transition is also included in the
pricing (the collateral utilization adjusted slightly), the protocol can manage the risk
of vault liquidations slightly better.

Example 2: Preventing the portfolio from achieving Delta neutrality
Whenever a vault’s naked margin requirements are below a certain threshold, the
protocol cannot issue options in this vault. This may have the effect of preventing the
portfolio from achieving Delta neutrality. As explained in Example 1, a major
component of the vault’s health is derived from Opyn’s time to expiry threshold, that’s
typically a step function over time, each step being 1 week. The health check can take
into consideration the time until the next step.

L3 Inconsistent computation of utilization premium ACKNOWLEDGED

The utilization premium, which is previously described under “Security Opinion”, does
not fairly calculate the utilization premium for options that have a relatively high price.

Although we cannot think of a way this might be exploited, as an important
component in pricing an option this could be improved. It can potentially result in
pricing options higher than the market price, thus reducing the efficiency of the
protocol.

013

DEDAUB.COM

The scenario arises since the current collateral does not factor the additional
collateral that is added as a result of the option pricing (see
collateralAsset.balanceOf(this), which computes the utilization after) in the
following code.

function addUtilizationPremium(...) {

...

quoteState.utilizationBefore = collateralAllocated_.div(

collateralAllocated_ +

ERC20(collateralAsset).balanceOf(address(this))

);

...

quoteState.utilizationAfter = (

quoteState.collateralToAllocate + collateralAllocated_).div(

collateralAllocated_ +

ERC20(collateralAsset).balanceOf(address(this))

);

....

}

Note that the option price is only levied at the end of the transaction that mints the
option, for instance in OptionHandler::executeOrder.

Collateral stemming from this fee is added after the utilization premium computation
takes place, for instance, in executeOrder:

function executeOrder(...) … {

...

// addUtilizationPremium called through quotePriceWithUtilizationGreeks

...

SafeTransferLib.safeTransferFrom(

collateralAsset_,

msg.sender,

address(liquidityPool),

014

DEDAUB.COM

convertedPrem

);

...

}

The option price may be significant, in cases when the option is in the money. It should
be noted that under normal market conditions, if the pool is backing ITM options, it
would likely be due to a long-term shift in price of the underlying and it’s also likely
that the pool is not delta neutral.

L4 PriceFeed::getNormalizedRate should check the
oracle’s price

FIXED
(partially)

PriceFeed::getNormalizedRate returns the price of an asset after consulting a
Chainlink data feed. According to Chainlink data feeds docs the data feed aggregator
defines minAnswer and maxAnswer values, which define the range of acceptable and
thus reported values. Nevertheless, not all applications share the same definition for
the range of acceptable values. Also, an application should not depend on the data
feed aggregator for such sensitive protocol values. An application should be able to
handle times when the price reported by Chainlink remains stale due to being outside
of the range of acceptable values. Also, it should respond accordingly to extreme price
volatility or even handle the extreme scenario in which the data feed reports a totally
inaccurate value.

Additional checks and price sources could be used to make the application more
robust. More specifically, the two dominant solutions employed by an array of well
established protocols are (1) maintaining a price TWAP and (2) querying a protocol
that maintains its own price feed/TWAP in case the Chainlink reported price deviation
exceeds a predefined threshold.

[The issue has been partially addressed by adding staleness and anomalous value
checks for the values returned by the Chainlink oracle. The protocol developers have
not opted for a fallback (TWAP) oracle due to the lack of trustworthy alternatives to
Chainlink oracles on the Arbitrum network at the moment.]

015

https://docs.chain.link/docs/using-chainlink-reference-contracts/#check-the-latest-answer-against-reasonable-limits

DEDAUB.COM

L5
PerpHedgingReactor::_changePosition does not check
actual amount swapped

FIXED

When PerpHedgingReactor::_changePosition is called, it is passed an _amount
parameter, which represents the amount of position to open/close. The function then
returns this same _amount parameter as is, without performing any checks to ensure
that a position of exactly _amount size has been created on the Rage Trade protocol.

Internally Rage Trade uses Uniswap V3 pools to create its vAMMs.
PerpHedgingReactor::_changePosition calls ClearingHouse::swapToken of
Rage Trade that calls the swap method of a slightly modified UniswapV3Pool. After
studying the pool’s implementation and how Uniswap and Rage Trade fees are
calculated we concluded that the created position will be of exactly _amount size,
which is inline with the understanding of the Rysk developers. It is crucial to ensure
that, as otherwise, the accounting of the delta of the LiquidityPool and the
internalDelta of the PerpHedgingReactor would be incorrect. A defensive solution
would be to have PerpHedgingReactor::_changePosition return the actual size of
the position created (or in other words the amount swapped by the pool and returned
by ClearingHouse::swapToken), vTokenAmountOut.

016

DEDAUB.COM

OTHER/ ADVISORY ISSUES:
This section details issues that are not thought to directly affect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 Modifiers should be preferred to functions for access control INFO

The developers of the protocol have opted for using functions instead of modifiers for
access control purposes. We would advise against that, as in our opinion modifiers are
easier to read, understand and reason about. At the same time, issues like C1 cannot
arise.

A2 LiquidityPool::settleVault could be made external FIXED

LiquidityPool::settleVault is defined as public while it is not called by any other
method of the LiquidityPool contract and thus could be made external.

A3
LiquidityPool::quotePriceWithUtilizationGreeks
could be made external

FIXED

LiquidityPool::quotePriceWithUtilizationGreeks is defined as public while it
is not called by any other method of the LiquidityPool contract and thus could be
made external.

A4 Inconsistent function naming practice FIXED

Most of the methods defined as internal have their name beginning with an
underscore. However, this is not true for every internal method. Examples, which are
not following this convention, are:

● LiquidityPool::getVolatilityFeed()
● LiquidityPool::getPortfolioValuesFeed()
● LiquidityPool::getOptionRegistry()
● LiquidityPool::getUnderlyingPrice(address, address)

017

DEDAUB.COM

● LiquidityPool::getNormalizedBalance(address)

A5
OptionHandler::pauseContract could be renamed to
pause

FIXED

Method pauseContract of the OptionHandler contract could be renamed to pause
as its symmetric method is named unpaused.

A6 Incorrect comment in
OptionRegistry::adjustCollateralCaller

FIXED

The comment in OptionRegistry::adjustCollateralCaller regarding making
sure that the balance change is recorded in the LiquidityPool is incorrect, as the
collateral is coming from the caller of the method, not from the LiquidityPool.

A7
OptionRegistry::redeem performs multiple calls to
OptionSeries::balanceOf while the result can be cached

FIXED

In OptionRegistry::redeem the call ERC20(_series).balanceOf(msg.sender) is
performed thrice. The three calls could be cut down to one and the result could be
cached and reused, as there are no changes to the actual balance of the msg.sender
in between the three calls.

A8 Method PriceFeed::getRate could be made external FIXED

PriceFeed::getRate is defined as public while it is not called by any other method of
the PriceFeed contract and thus could be made external. Otherwise, getRate could be
called by getNormalizedRate, leading to less code duplication.

A9 Protocol storage variables can be made immutable FIXED

Storage variables optionRegistry and priceFeed of the Protocol contract can be made
immutable, as they cannot be modified after the contract's construction.

A10 Unused error defined in AccessControl.sol FIXED

018

DEDAUB.COM

The error AUTHORITY_INITIALIZED defined in AccessControl.sol is not used
anywhere.

A11
VolatilityFeed::_isKeeper could use custom error in
revert

FIXED

VolatilityFeed::_isKeeper reverts when the msg.sender is not a keeper, manager
or governor. Nevertheless, the revert does not use the custom error NotKeeper defined
in CustomErrors

A12 LiquidityPool::_isTradingPaused should be renamed to
_isNotTradingPaused

FIXED

LiquidityPool::_isTradingPaused is used to stop and revert execution when
trading has been paused. Thus, the function should be renamed to
_isNotTradingPaused to reflect the fact that not reverting, i.e., returning, means that
trading has not been paused.

A13 aboveThresholdYIntercept can be calculated on-chain FIXED

LiquidityPool::setUtilizationSkewParams sets 4 values which represent the
utilization skew graph. These are:

● belowThresholdGradient
● aboveThresholdGradient
● aboveThresholdYIntercept
● utilizationFunctionThreshold

aboveThresholdYIntercept can be calculated using the other parameters rather
than given by the caller. Doing this would ensure that the 2 lines represented by the
function must always intersect at the utilizationFunctionThreshold, as intended.

aboveThresholdYIntercept = _utilizationFunctionThreshold *
(_belowThresholdGradient - _aboveThresholdGradient)

019

DEDAUB.COM

A14 Mistakes in Comments / Docs FIXED

In LiquidityPool::setBufferPercentage
_bufferPercentage comment is incorrect.

In OptionHandler::createStrangle
Order of return values does not match function comment.

In OracleFeeds.md
Tracks events from the request and earlier (not later)

A15
PerpHedgingReactor storage variables can be made
immutable

FIXED

Storage variables accountId, collateralId and poolId of the PerpHedgingReactor
contract can be made immutable, as they cannot be modified after the contract's
construction.

A16 Compiler bugs INFO

The contracts were compiled with the Solidity compiler v0.8.9 which, at the time of
writing, has some known bugs. We inspected the bugs listed for this version and
concluded that the subject code is unaffected.

020

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

DEDAUB.COM

CENTRALIZATION ASPECTS
As is common in many new protocols, the owner of the smart contracts yields
considerable power over the protocol, including changing the contracts holding the
user’s funds, setting important price parameters, collateralization, etc.

In particular, whoever controls the governor role can:
- Change the options pricing parameters passed to the Black Scholes equations,

minting themselves free Options.

021

DEDAUB.COM

DISCLAIMER
The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB
Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

022

